Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
1. Given that $A$ is an orthogonal matrix: \[ A^T = A^{-1} \] \[ A^2 = A^{-1} \]
2. Given $A^2 = A^T$: \[ A^3 = I \]
3. Calculate $(A + I)^3 + (A - I)^3 - 6A$: \[ (A + I)^3 + (A - I)^3 - 6A = 2(A^3 + 3A) - 6A = 2A^3 = 2I \]
4. Sum of the diagonal elements of $2I$: \[ 2I = \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] \[ \text{Sum of diagonal elements} = 2 + 2 + 2 = 6 \] Therefore, the correct answer is (1) 6.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: