Understanding the Sign of the Cofactor:
Be very careful with the sign of the cofactor. The sign is determined by \( (-1)^{i+j} \), which follows a checkerboard pattern of signs in the matrix:
\( \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix} \)
Applying to A23 and A32:
For \( A_{23} \), the position (2, 3) has a \( - \) sign (since \( i + j = 2 + 3 = 5 \), and \( (-1)^5 = -1 \)).
For \( A_{32} \), the position (3, 2) also has a \( - \) sign (since \( i + j = 3 + 2 = 5 \), and \( (-1)^5 = -1 \)).
Conclusion:
When calculating cofactors, always be mindful of the checkerboard sign pattern, which is determined by \( (-1)^{i+j} \). For positions (2,3) and (3,2), the signs are both \( - \).
Step 1: Understanding the Concept:
We need to calculate specific minors and cofactors of the given 3x3 matrix and check which of the given statements are true.
The minor \( M_{ij} \) of an element \( a_{ij} \) is the determinant of the submatrix formed by deleting the \( i \)-th row and \( j \)-th column.
The cofactor \( A_{ij} \) is related to the minor by the formula \( A_{ij} = (-1)^{i+j} M_{ij} \).
Step 2: Key Formula or Approach:
We will use the above definitions and calculate the minors and cofactors for each statement.
Step 3: Detailed Explanation:
The given matrix is: \[ A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 4 & 1 \end{bmatrix}. \] Let's evaluate each statement.
(A) \( M_{22} = -1 \):
\( M_{22} \) is the minor of the element \( a_{22} = 3 \). We delete the 2nd row and 2nd column. \[ M_{22} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = (1)(1) - (1)(2) = 1 - 2 = -1 \] Statement (A) is true.
(B) \( A_{23} = 0 \):
\( A_{23} \) is the cofactor of the element \( a_{23} = 2 \). First, find the minor \( M_{23} \). \[ M_{23} = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = (1)(4) - (2)(2) = 4 - 4 = 0 \] Now, calculate the cofactor. \[ A_{23} = (-1)^{2+3} M_{23} = (-1)^5 (0) = 0 \] Statement (B) is true.
(C) \( A_{32} = 3 \):
\( A_{32} \) is the cofactor of the element \( a_{32} = 4 \). First, find the minor \( M_{32} \). \[ M_{32} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = (1)(2) - (1)(1) = 2 - 1 = 1 \] Now, calculate the cofactor. \[ A_{32} = (-1)^{3+2} M_{32} = (-1)^5 (1) = -1 \] Statement (C) is false.
(D) \( M_{23} = 1 \):
From our calculation for statement (B), we found that \( M_{23} = 0 \). Statement (D) is false.
(E) \( M_{32} = -3 \):
The OCR here is likely a typo. Based on the options, let's assume it should have been \( A_{32} = -1 \), or something related. From our calculation for statement (C), we found \( M_{32} = 1 \). Statement (E) is false.
Step 4: Final Answer:
The only true statements are (A) and (B). Therefore, the correct option is (1).
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
'рдЗрджрдореН' рд╢рдмреНрджрд╕реНрдп рд╕реНрддреНрд░реАрд▓рд┐рдЩреНрдЧреЗ рддреГрддреАрдпрд╛-рд╡рд┐рднрдХреНрддреМ рдмрд╣реБрд╡рдЪрдиреЗ рдХрд┐ рд░реВрдкрдВ рднрд╡рддрд┐ ?
'рдХрд░реНрддреГ' рд╢рдмреНрджрд╕реНрдп рдПрдХрд╡рдЪрдирд╕реНрдп рд░реВрдкрд╛рдгрд┐ рдЗрдорд╛рдирд┐ рд╡рд┐рднрдХреНрддреНрдпрдиреБрд╕рд╛рд░рдВ рдХреНрд░рдореЗрдг рд╡реНрдпрд╡рд╕реНрдерд╛рдкрдпрдд ред
(A) рдХрд░реНрддреНрд░рд╛
(B) рдХрд░реНрддреНрд░реЗ
(C) рдХрд░реНрддреБрдГ
(D) рдХрд░реНрддрд╛рд░рдореН
(E) рдХрд░реНрддрд╛
рдЕрдзреЛрд▓рд┐рдЦрд┐рддреЗрд╖реБ рд╡рд┐рдХрд▓реНрдкреЗрд╖реБ рдЙрдЪрд┐рддрддрдордореН рдЙрддреНрддрд░рдВ рдЪрд┐рдиреБрдд-
рдкреНрд░рдердорд╛рдВ рд╕реВрдЪреАрдВ рджреНрд╡рд┐рддреАрдпрдпрд╛ рд╕реВрдЪреНрдпрд╛ рд╕рд╣ рдореЗрд▓рдпрдд ред
рд╕реВрдЪреА-I | рд╕реВрдЪреА-II |
---|---|
(A) рд╖рдбрд╛рдирдирдГ | (I) рдпрдгреН-рд╕рдиреНрдзрд┐рдГ |
(B) рдпрджреНрдпрддреНрд░ | (II) рд╡реНрдпрдЮреНрдЬрди-рд╕рдиреНрдзрд┐рдГ |
(C) рд╕рд╛рдзреБрд╕реНрддрд░рддрд┐ | (III) рд╡рд┐рд╕рд░реНрдЧ-рд╕рдиреНрдзрд┐рдГ |
(D) рдорд╣реМрд╖рдзрдореН | (IV) рд╡реГрджреНрдзрд┐-рд╕рдиреНрдзрд┐рдГ |
рдЕрдзреЛрд▓рд┐рдЦрд┐рддреЗрд╖реБ рд╡рд┐рдХрд▓реНрдкреЗрд╖реБ рдЙрдЪрд┐рддрддрдордореН рдЙрддреНрддрд░рдВ рдЪрд┐рдиреБрдд -
'рдЙрддреН+рджреЗрд╢рдГ' рдЗрддреНрдпрддреНрд░ рд╕рдиреНрдзрд┐рдВ рдХреБрд░реБрдд ред
'рджреБрд╖реНрдХреГрддрдореН' рдЗрддреНрдпрд╕реНрдп рд╕рдиреНрдзрд┐-рд╡рд┐рдЪреНрдЫреЗрджрдВ рдХреБрд░реБрдд ред