Computing the area: \[ A = \int_{-1}^{0} (x^2 - 3x) dx + \int_{0}^{2} (3x - x^2) dx \] \[ A = \left[ \frac{x^3}{3} - \frac{3x^2}{2} \right]_{-1}^{0} + \left[ \frac{3x^2}{2} - \frac{x^3}{3} \right]_{0}^{2} \] \[ A = \frac{11}{6} + \frac{10}{3} - \frac{31}{6} \] \[ \Rightarrow 12A = 62 \]
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to:
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: