To solve this problem, we need to analyze the determinant expression given and calculate the required values of \( \alpha \), \( \beta \), and \( \gamma \).
We're provided with the matrix \( A \) of order \( 3 \times 3 \) and its determinant \( |A| = 5 \). We need to find the determinant of the expression \( |2 \, \text{adj}(3A \, \text{adj}(2A))| \) and write it in the form \( 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \), then find \( \alpha + \beta + \gamma \).
- Firstly, recall the properties of the adjugate matrix. For a \( 3 \times 3 \) matrix \( B \), \(|\text{adj}(B)| = |B|^{2}\).
- Given \( |A| = 5 \), find \(|2A|\):
- \(|2A| = 2^3 \cdot |A| = 8 \cdot 5 = 40\)
- Calculate \(|\text{adj}(2A)|\):
- \(|\text{adj}(2A)| = |2A|^2 = 40^2 = 1600\)
- Next, consider \( B = 3A \, \text{adj}(2A) \). Then, \(|B|\) is calculated as:
- \(|B| = |3A| \cdot |\text{adj}(2A)| = (3^3 \cdot |A|) \cdot 1600 = 27 \cdot 5 \cdot 1600\)
- Simplify:
- \(|B| = 27 \cdot 5 \cdot 1600 = 216000\)
- Now, calculate \(|\text{adj}(B)|\) using \( B \) of order \( 3 \times 3 \):
- \(|\text{adj}(B)| = |B|^2 = 216000^2\)
- Find \(|2 \, \text{adj}(B)|\):
- \(|2 \, \text{adj}(B)| = 2^3 \cdot |\text{adj}(B)| = 8 \cdot 216000^2\)
- Finally, express \(|2 \, \text{adj}(B)|\) as \( 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \) and determine \(\alpha + \beta + \gamma\).
- Simplify with the prime factorization:
- \( 216000 = 2^5 \times 3^3 \times 5^3 \)
- \( 216000^2 = (2^5 \times 3^3 \times 5^3)^2 = 2^{10} \times 3^6 \times 5^6 \)
- \( 8 \times 216000^2 = 2^3 \times 2^{10} \times 3^6 \times 5^6 = 2^{13} \times 3^6 \times 5^6 \)
- Thus, \(\alpha = 13\), \(\beta = 6\), \(\gamma = 6\), and \(\alpha + \beta + \gamma = 13 + 6 + 6 = 27\).
Therefore, the answer is 27.