To solve this problem, we need to analyze the determinant expression given and calculate the required values of \( \alpha \), \( \beta \), and \( \gamma \).
We're provided with the matrix \( A \) of order \( 3 \times 3 \) and its determinant \( |A| = 5 \). We need to find the determinant of the expression \( |2 \, \text{adj}(3A \, \text{adj}(2A))| \) and write it in the form \( 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \), then find \( \alpha + \beta + \gamma \).
Therefore, the answer is 27.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]