Let $ A $ be a matrix of order $ 3 \times 3 $ and $ |A| = 5 $. If
$
|2 \, \text{adj}(3A \, \text{adj}(2A))| = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma}, \quad \alpha, \beta, \gamma \in \mathbb{N}
$
then $ \alpha + \beta + \gamma $ is equal to
Show Hint
To solve matrix determinant problems involving adjugates and scalar multiplication, remember the key formulas:
\[
|\text{adj}(A)| = |A|^{n-1}, \quad |kA| = k^n |A|
\]
Also, the adjugate of a product doesn't distribute over multiplication like regular matrices, so simplify the inner terms first before applying adjugate or determinant rules.