If \( A \) is a square matrix such that \( A^2 = A \), then \((I - A)^3\) is:
Step 1: Recall the given condition
We are given that \( A^2 = A \). This means that \( A \) is a **idempotent matrix**. An idempotent matrix is a matrix that, when multiplied by itself, results in the same matrix.
Step 2: Consider the expression \( (I - A)^3 \)
We need to compute \( (I - A)^3 \). We can expand this expression step by step. First, let's begin by calculating \( (I - A)^2 \):
\[
(I - A)^2 = (I - A)(I - A) = I^2 - 2I \cdot A + A^2
\]
Since \( I^2 = I \) and \( A^2 = A \) (from the given condition), we have:
\[
(I - A)^2 = I - 2A + A = I - A
\]
Step 3: Compute \( (I - A)^3 \)
Now, we can compute \( (I - A)^3 \) using the result from Step 2:
\[
(I - A)^3 = (I - A)(I - A)^2 = (I - A)(I - A)
\]
From Step 2, we know that \( (I - A)^2 = I - A \), so:
\[
(I - A)^3 = (I - A)(I - A) = (I - A)^2 = I - A
\]
Step 4: Conclusion
Therefore, we conclude that:
\[
(I - A)^3 = I - A
\]