Coplanar vectors have a scalar triple product of zero. Be careful when manipulating equations and look for algebraic techniques to simplify expressions
We start with the determinant:
\[ \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \]
Perform row operations to simplify the determinant:
\( C_2 \rightarrow C_2 - C_1, \quad C_3 \rightarrow C_3 - C_1 \)
This results in:
\[ \begin{vmatrix} a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1 \end{vmatrix} \]
Expand the determinant:
\( a(b - 1)(c - 1) - (1 - a)(c - 1) + (1 - a)(1 - b) = 0 \)
Simplify the equation:
\( a(1 - b)(1 - c) + (1 - a)(1 - c) + (1 - a)(1 - b) = 0 \)
Divide through by \( (1 - a)(1 - b)(1 - c) \) (assuming none of the terms are zero):
\( \frac{a}{1 - a} + \frac{1}{1 - b} + \frac{1}{1 - c} = 0 \)
\( \frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =0 \)
Rearrange the terms to isolate the result:
\( -1 + \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0 \)
Therefore:
\( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1 \)
Match the LIST-I with LIST-II
| LIST-I (Expressions) | LIST-II (Values) | ||
|---|---|---|---|
| A. | \( i^{49} \) | I. | 1 |
| B. | \( i^{38} \) | II. | \(-i\) |
| C. | \( i^{103} \) | III. | \(i\) |
| D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: