Coplanar vectors have a scalar triple product of zero. Be careful when manipulating equations and look for algebraic techniques to simplify expressions
We start with the determinant:
\[ \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \]
Perform row operations to simplify the determinant:
\( C_2 \rightarrow C_2 - C_1, \quad C_3 \rightarrow C_3 - C_1 \)
This results in:
\[ \begin{vmatrix} a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1 \end{vmatrix} \]
Expand the determinant:
\( a(b - 1)(c - 1) - (1 - a)(c - 1) + (1 - a)(1 - b) = 0 \)
Simplify the equation:
\( a(1 - b)(1 - c) + (1 - a)(1 - c) + (1 - a)(1 - b) = 0 \)
Divide through by \( (1 - a)(1 - b)(1 - c) \) (assuming none of the terms are zero):
\( \frac{a}{1 - a} + \frac{1}{1 - b} + \frac{1}{1 - c} = 0 \)
\( \frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =0 \)
Rearrange the terms to isolate the result:
\( -1 + \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0 \)
Therefore:
\( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1 \)
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are: