Let
\(\vec{a}\) and \(\vec{b}\) be two vectors such that
\(|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2,\ \vec{a} \cdot \vec{b} = 3\) and \(|\vec{a} \times \vec{b}|^2 = 75\)
Then \(|\vec{a}|^2\) is equal to _____.
Given the conditions:
|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2, \vec{a} \cdot \vec{b} = 3, and |\vec{a} \times \vec{b}|^2 = 75, we need to find |\vec{a}|^2.
Start by expanding |\vec{a}+\vec{b}|^2:
|\vec{a}+\vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2.
Given |\vec{a}+\vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2, equate the expressions:
|\vec{a}|^2 + 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2.
Simplifying gives:
2(\vec{a} \cdot \vec{b}) = |\vec{b}|^2.
We know \vec{a} \cdot \vec{b} = 3, so:
2 \times 3 = |\vec{b}|^2.
Thus, |\vec{b}|^2 = 6.
Next, use |\vec{a} \times \vec{b}|^2 = 75:
The magnitude of the cross product is given by:
|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2.
Substitute the known values:
75 = |\vec{a}|^2 \times 6 - 3^2.
Simplifying:
75 = 6|\vec{a}|^2 - 9.
Add 9 to both sides:
84 = 6|\vec{a}|^2.
Divide by 6:
|\vec{a}|^2 = 14.
The value falls within the expected range of 14,14. Hence, |\vec{a}|^2 = 14.
\(\because |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2\)
or \(|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{a}|^2 + 2|\vec{b}|^2\)
\(∴ |\vec{b}|^2=6 …(i)\)
Now,\(|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - \left(\vec{a} \cdot \vec{b}\right)^2\)
\(75=|\vec{a}|^2⋅6−9\)
\(∴ |\vec{a}|^2=14\)
So, the correct answer is 14.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
A vector is an object that has both the direction and the magnitude. The length indicates the magnitude of the vectors, whereas the arrow indicates the direction. There are different types of vectors such as:
A vector product is a cross-product or area product, which is formed when two real vectors are joined together in a three-dimensional space. If we assume the two vectors to be a and b, their vector is denoted by a x b.
|c¯| = |a||b|sin θ
Where;
a and b are the magnitudes of the vector and θ is equal to the angle between the two given vectors. In this way, we can say that there are two angles between any two given vectors.
These two angles are θ and (360° - θ). When we follow this rule we consider the smaller angle which is less than 180°.