Given: \[ |A| = 3, \quad |B| = 2 \] \[ |A^{\top} (\text{adj}(2A))^{-1} (\text{adj}(4B)) (\text{adj}(AB))^{-1} AA^{\top}| = 3 \times 3 \times |(\text{adj}(2A))^{-1}| \times |\text{adj}(4B)| \times |(\text{adj}(AB))^{-1}| \times 3 \times 3 \]
Breaking it into steps: \[ = \frac{1}{|\text{adj}(2A)|} \times 2^{12} \times 2^2 \times \frac{1}{|\text{adj}(AB)|} \]
Now calculating the determinant of adjugates: \[ = \frac{1}{2^6 |\text{adj} A|} \times \frac{1}{2^2 \times 3^2} \quad (\text{for } |\text{adj}(2A)|) \] \[ = \frac{1}{|\text{adj} B| \times |\text{adj} A|} \quad (\text{for } |\text{adj}(AB)|) \]
Further simplification: \[ = \frac{1}{2^{12} \times 3^2} \]
Simplifying: \[ = \frac{3^4}{2^6 \times 3^2} \times \frac{2^{12} \times 2^2}{2^2 \times 3^2} \]
Combining terms: \[ = 64 \]
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 