Given: \[ |A| = 3, \quad |B| = 2 \] \[ |A^{\top} (\text{adj}(2A))^{-1} (\text{adj}(4B)) (\text{adj}(AB))^{-1} AA^{\top}| = 3 \times 3 \times |(\text{adj}(2A))^{-1}| \times |\text{adj}(4B)| \times |(\text{adj}(AB))^{-1}| \times 3 \times 3 \]
Breaking it into steps: \[ = \frac{1}{|\text{adj}(2A)|} \times 2^{12} \times 2^2 \times \frac{1}{|\text{adj}(AB)|} \]
Now calculating the determinant of adjugates: \[ = \frac{1}{2^6 |\text{adj} A|} \times \frac{1}{2^2 \times 3^2} \quad (\text{for } |\text{adj}(2A)|) \] \[ = \frac{1}{|\text{adj} B| \times |\text{adj} A|} \quad (\text{for } |\text{adj}(AB)|) \]
Further simplification: \[ = \frac{1}{2^{12} \times 3^2} \]
Simplifying: \[ = \frac{3^4}{2^6 \times 3^2} \times \frac{2^{12} \times 2^2}{2^2 \times 3^2} \]
Combining terms: \[ = 64 \]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).