Step 1: Understanding the Concept:
This question tests the knowledge of basic definitions related to matrices, specifically symmetric, skew-symmetric, singular, and non-singular matrices.
Step 3: Detailed Explanation:
Let's analyze each item in List-I and match it with the correct definition in List-II.
(A) \( A^T = A \): This is the definition of a symmetric matrix. A matrix is symmetric if it is equal to its transpose. This matches with (IV).
(B) \( A^T = -A \): This is the definition of a skew-symmetric matrix. A matrix is skew-symmetric if its transpose is equal to its negative. This matches with (III).
(C) \( |A| = 0 \): The determinant of a matrix being zero is the condition for the matrix to be a singular matrix. This matches with (I).
(D) \( |A| \neq 0 \): The determinant of a matrix being non-zero is the condition for the matrix to be a non-singular matrix. Such matrices have an inverse. This matches with (II).
Step 4: Final Answer:
Combining the matches, we get:
This combination corresponds to option (2).
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |