To find \( a_{23} \) of the matrix \( A = [a_{ij}] \), given the inverse \( A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 3 & 0 \\ 2 & 1 & 0 \end{bmatrix} \), we need to use the property that \( A \times A^{-1} = I \), where \( I \) is the identity matrix.
The identity matrix for a \(3 \times 3\) matrix is:
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |
To calculate the product \( A \times A^{-1} \):
\( A = \begin{bmatrix} 0 & 0 & 4 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix} \) and \( A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 3 & 0 \\ 2 & 1 & 0 \end{bmatrix} \), calculate \( A \times A^{-1} \).
The element \((2, 3)\) of the product \( A \times A^{-1} \) is given by:
\(a_{23} \times (1, 0, 0)^T = 0 \times 0 + 0 \times 1 + a_{23} \times 0 = 0\)
Calculating for each element (i, j) of the product \( A \times A^{-1} \), particularly for the third row and second column:
This matches the identity matrix entry at \( (2, 3) \), which is 0.
Thus, \( a_{23} \) correctly reproduces this multiplication result. Therefore, the missing \( a_{23} \) should satisfy the row and column multiplication correctly, giving \( a_{23} = -1 \) so that: \( 3 \cdot 3\,+ \, 4 \cdot 1\, = 0\). Thus:
The value \( a_{23} \) equals \(-1\).
Hence, the correct answer is:
\(-1\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Find the product of the matrices: \[ \left[ \begin{matrix} 6 & 5 \end{matrix} \right] \left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \]
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: