We are given the matrix \( A = [a_{ij}] \):
\[
A = \begin{bmatrix}
0 & 0 & 4
1 & 0 & 0
0 & 1 & 3
\end{bmatrix}.
\]
and the matrix \( A^{-1} = \begin{bmatrix}
0 & 1 & 0
1 & 3 & 0
2 & 1 & 0
\end{bmatrix} \).
We need to find \( a_{23} \), the element in the second row and third column of matrix \( A \).
First, recall that if \( A^{-1} \) exists, the product of \( A \) and \( A^{-1} \) must yield the identity matrix:
\[
A \cdot A^{-1} = I.
\]
Multiplying matrix \( A \) with \( A^{-1} \), we get the identity matrix:
\[
\begin{bmatrix}
0 & 0 & 4
1 & 0 & 0
0 & 1 & 3
\end{bmatrix} \cdot
\begin{bmatrix}
0 & 1 & 0
1 & 3 & 0
2 & 1 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0
0 & 1 & 0
0 & 0 & 1
\end{bmatrix}.
\]
Multiplying the first row of matrix \( A \) by the first column of matrix \( A^{-1} \):
\[
0(0) + 0(1) + 4(2) = 8.
\]
Thus, \( a_{23} = -1 \).