We are given the sum: \[ a_1 + a_2 + \dots + a_{2024} = 2233 \] In an Arithmetic Progression (A.P.), the sum of terms equidistant from the ends is equal, so: \[ a_1 + a_{2024} = a_2 + a_{2023} = \dots = a_{1012} + a_{1013} \] Thus, the number of pairs is: \[ 203 \quad \text{pairs of the form} \quad (a_1 + a_{2024}) \] Hence, we calculate: \[ S_{2024} = \frac{2024}{2} (a_1 + a_{2024}) = 2233 \] Now using the sum of A.P. formula, we get: \[ S = 2024 \times 11 \] \(\text{Therefore, the final sum is:}\) \[ \boxed{11132} \]
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.