We are given the sum: \[ a_1 + a_2 + \dots + a_{2024} = 2233 \] In an Arithmetic Progression (A.P.), the sum of terms equidistant from the ends is equal, so: \[ a_1 + a_{2024} = a_2 + a_{2023} = \dots = a_{1012} + a_{1013} \] Thus, the number of pairs is: \[ 203 \quad \text{pairs of the form} \quad (a_1 + a_{2024}) \] Hence, we calculate: \[ S_{2024} = \frac{2024}{2} (a_1 + a_{2024}) = 2233 \] Now using the sum of A.P. formula, we get: \[ S = 2024 \times 11 \] \(\text{Therefore, the final sum is:}\) \[ \boxed{11132} \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
