We are given the sum: \[ a_1 + a_2 + \dots + a_{2024} = 2233 \] In an Arithmetic Progression (A.P.), the sum of terms equidistant from the ends is equal, so: \[ a_1 + a_{2024} = a_2 + a_{2023} = \dots = a_{1012} + a_{1013} \] Thus, the number of pairs is: \[ 203 \quad \text{pairs of the form} \quad (a_1 + a_{2024}) \] Hence, we calculate: \[ S_{2024} = \frac{2024}{2} (a_1 + a_{2024}) = 2233 \] Now using the sum of A.P. formula, we get: \[ S = 2024 \times 11 \] \(\text{Therefore, the final sum is:}\) \[ \boxed{11132} \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: