Given A.P.:
\[
\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}, \ldots
\]
Step 1: Find the first term \(a\)
\[
a = \frac{3}{2}
\]
Step 2: Find the common difference \(d\)
\[
d = \frac{1}{2} - \frac{3}{2} = -1
\]
Step 3: Use formula for the \(n\)-th term of A.P.
\[
a_n = a + (n - 1)d
\]
Step 4: Calculate the 22nd term
\[
a_{22} = \frac{3}{2} + (22 - 1)(-1) = \frac{3}{2} - 21 = \frac{3}{2} - \frac{42}{2} = -\frac{39}{2}
\]
Final Answer:
\[
\boxed{-\frac{39}{2}}
\]