Given:
\[ d \rightarrow \text{common difference.} \]
The general term:
\[ A_k = kd \left[ 2a + (2k - 1)d \right] \]
Given:
\[ A_3 = -153 \] \[ \Rightarrow 153 = 13d \left[ 2a + 5d \right] \]
Simplifying:
\[ 51 = d \left[ 2a + 5d \right] \quad \dots (1) \]
Also, given:
\[ A_5 = -435 \] \[ 435 = 5d \left[ 2a + 9d \right] \]
Simplifying:
\[ 87 = d \left[ 2a + 9d \right] \quad \dots (2) \]
Subtracting equation (1) from equation (2):
\[ 36 = 4d^2 \] \[ d = 3, \quad a = 1 \]
Finally:
\[ a_{17} - A_7 = 49 - \left[ -7.3 \left[ 2 + 39 \right] \right] = 910 \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.