Given:
\[ d \rightarrow \text{common difference.} \]
The general term:
\[ A_k = kd \left[ 2a + (2k - 1)d \right] \]
Given:
\[ A_3 = -153 \] \[ \Rightarrow 153 = 13d \left[ 2a + 5d \right] \]
Simplifying:
\[ 51 = d \left[ 2a + 5d \right] \quad \dots (1) \]
Also, given:
\[ A_5 = -435 \] \[ 435 = 5d \left[ 2a + 9d \right] \]
Simplifying:
\[ 87 = d \left[ 2a + 9d \right] \quad \dots (2) \]
Subtracting equation (1) from equation (2):
\[ 36 = 4d^2 \] \[ d = 3, \quad a = 1 \]
Finally:
\[ a_{17} - A_7 = 49 - \left[ -7.3 \left[ 2 + 39 \right] \right] = 910 \]
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + ... \infty = \frac{\pi^4}{90}, $ $ \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... \infty = \alpha, $ $ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + ... \infty = \beta, $ then $ \frac{\alpha}{\beta} $ is equal to:
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
