Let \(\frac{\pi}{2}<x<\pi\) be such that \(\cot x=\frac{-5}{\sqrt{11}}\). Then \((\sin\frac{11x}{2})(\sin 6x-\cos6x)+(\cos\frac{11x}{2})(\sin 6x+\cos 6x)\)
is equal to
To solve the problem, we need to simplify the given expression using trigonometric identities and the given value of \(\cot x\).
1. Given information:
\[ \frac{\pi}{2} < x < \pi, \quad \cot x = \frac{-5}{\sqrt{11}} \] Expression to simplify: \[ (\sin \frac{11x}{2})(\sin 6x - \cos 6x) + (\cos \frac{11x}{2})(\sin 6x + \cos 6x) \]
2. Group terms involving \(\sin 6x\) and \(\cos 6x\):
\[ = \sin \frac{11x}{2} \cdot \sin 6x - \sin \frac{11x}{2} \cdot \cos 6x + \cos \frac{11x}{2} \cdot \sin 6x + \cos \frac{11x}{2} \cdot \cos 6x \] Group as: \[ = (\sin \frac{11x}{2} \sin 6x + \cos \frac{11x}{2} \cos 6x) + (\cos \frac{11x}{2} \sin 6x - \sin \frac{11x}{2} \cos 6x) \]
3. Use cosine and sine addition formulas:
Recall:
\[ \cos (A - B) = \cos A \cos B + \sin A \sin B \] \[ \sin (A - B) = \sin A \cos B - \cos A \sin B \] So, \[ \sin \frac{11x}{2} \sin 6x + \cos \frac{11x}{2} \cos 6x = \cos \left( \frac{11x}{2} - 6x \right) \] and \[ \cos \frac{11x}{2} \sin 6x - \sin \frac{11x}{2} \cos 6x = \sin \left( 6x - \frac{11x}{2} \right) \]
4. Simplify the angles:
\[ \frac{11x}{2} - 6x = \frac{11x}{2} - \frac{12x}{2} = -\frac{x}{2} \] \[ 6x - \frac{11x}{2} = \frac{12x}{2} - \frac{11x}{2} = \frac{x}{2} \] Therefore, the expression becomes: \[ \cos \left( -\frac{x}{2} \right) + \sin \left( \frac{x}{2} \right) \]
5. Use even-odd properties of trig functions:
\[ \cos(-\theta) = \cos \theta, \quad \sin \theta = \sin \theta \] So, \[ \cos \left( -\frac{x}{2} \right) + \sin \left( \frac{x}{2} \right) = \cos \frac{x}{2} + \sin \frac{x}{2} \]
6. Express \(\cos \frac{x}{2} + \sin \frac{x}{2}\) in a single trigonometric function:
\[ \cos \frac{x}{2} + \sin \frac{x}{2} = \sqrt{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) \]
7. Find \(\sin \left( \frac{x}{2} + \frac{\pi}{4} \right)\) using the value of \(\cot x\):
Given: \[ \cot x = \frac{-5}{\sqrt{11}} = \frac{\cos x}{\sin x} \] Since \(\frac{\pi}{2} < x < \pi\), \(\sin x > 0\) and \(\cos x < 0\). Let's find \(\sin x\) and \(\cos x\):
8. Calculate \(\sin x\) and \(\cos x\):
From \(\cot x = \frac{\cos x}{\sin x} = \frac{-5}{\sqrt{11}}\), let: \[ \cos x = -5k, \quad \sin x = \sqrt{11} k, \quad k > 0 \] Using Pythagoras: \[ \sin^2 x + \cos^2 x = 1 \] \[ ( \sqrt{11} k )^2 + (-5k)^2 = 1 \] \[ 11 k^2 + 25 k^2 = 1 \implies 36 k^2 = 1 \implies k = \frac{1}{6} \] So, \[ \sin x = \frac{\sqrt{11}}{6}, \quad \cos x = -\frac{5}{6} \]
9. Use half-angle formulas:
\[ \sin \frac{x}{2} = \sqrt{ \frac{1 - \cos x}{2} } = \sqrt{ \frac{1 - \left(-\frac{5}{6}\right)}{2} } = \sqrt{ \frac{1 + \frac{5}{6}}{2} } = \sqrt{ \frac{\frac{11}{6}}{2} } = \sqrt{\frac{11}{12}} = \frac{\sqrt{11}}{2 \sqrt{3}} \] \[ \cos \frac{x}{2} = \sqrt{ \frac{1 + \cos x}{2} } = \sqrt{ \frac{1 - \frac{5}{6}}{2} } = \sqrt{ \frac{\frac{1}{6}}{2} } = \sqrt{\frac{1}{12}} = \frac{1}{2 \sqrt{3}} \]
10. Calculate \(\sin \left( \frac{x}{2} + \frac{\pi}{4} \right)\):
Using sum formula:
\[ \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) = \sin \frac{x}{2} \cos \frac{\pi}{4} + \cos \frac{x}{2} \sin \frac{\pi}{4} \] \[ = \sin \frac{x}{2} \cdot \frac{\sqrt{2}}{2} + \cos \frac{x}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \left( \sin \frac{x}{2} + \cos \frac{x}{2} \right) \] \[ = \frac{\sqrt{2}}{2} \left( \frac{\sqrt{11}}{2 \sqrt{3}} + \frac{1}{2 \sqrt{3}} \right) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{11} + 1}{2 \sqrt{3}} = \frac{\sqrt{2} (\sqrt{11} + 1)}{4 \sqrt{3}} \]
11. Substitute back:
\[ \cos \frac{x}{2} + \sin \frac{x}{2} = \sqrt{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) = \sqrt{2} \times \frac{\sqrt{2} (\sqrt{11} + 1)}{4 \sqrt{3}} = \frac{2 (\sqrt{11} + 1)}{4 \sqrt{3}} = \frac{\sqrt{11} + 1}{2 \sqrt{3}} \]
Final Answer:
The value of the given expression is: \[ \boxed{ \frac{\sqrt{11} + 1}{2 \sqrt{3}} } \]
To solve the problem, we need to evaluate the given expression based on the provided value of \(\cot x\).
1. Understanding the Given Information:
We are given that \( \cot x = -\frac{5}{\sqrt{11}} \). We need to find the value of the expression:
\[
\sin\left(\frac{11x}{2}\right) (\sin 6x - \cos 6x) + \cos\left(\frac{11x}{2}\right) (\sin 6x + \cos 6x)
\]
2. Using Trigonometric Identities:
Let's break the given expression into two parts. We can simplify the second part using the sum and difference trigonometric identities.
The expression becomes:
\[
\sin\left(\frac{11x}{2}\right) (\sin 6x - \cos 6x) + \cos\left(\frac{11x}{2}\right) (\sin 6x + \cos 6x)
\]
Using the sum formula \( \sin A \cos B + \cos A \sin B = \sin(A + B) \), we have:
\[
= \sin\left(\frac{11x}{2} + 6x\right)
\]
3. Simplifying the Angle:
Now, simplify the angle of the sine term:
\[
\frac{11x}{2} + 6x = \frac{11x}{2} + \frac{12x}{2} = \frac{23x}{2}
\]
So, the expression simplifies to:
\[
\sin\left(\frac{23x}{2}\right)
\]
4. Relating \( \cot x \) to \( \sin x \) and \( \cos x \):
We are given that \( \cot x = -\frac{5}{\sqrt{11}} \), which means:
\[
\cot x = \frac{\cos x}{\sin x}
\]
Thus, \( \cos x = -\frac{5}{\sqrt{11}} \sin x \). Now, we can use the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \) to find \( \sin x \) and \( \cos x \):
\[
\cos^2 x = \left( -\frac{5}{\sqrt{11}} \sin x \right)^2 = \frac{25}{11} \sin^2 x
\]
Substituting into the identity:
\[
\sin^2 x + \frac{25}{11} \sin^2 x = 1
\]
Factor out \( \sin^2 x \):
\[
\sin^2 x \left( 1 + \frac{25}{11} \right) = 1
\]
Simplify:
\[
\sin^2 x \times \frac{36}{11} = 1
\]
Solving for \( \sin^2 x \):
\[
\sin^2 x = \frac{11}{36}
\]
Thus:
\[
\sin x = \frac{\sqrt{11}}{6}, \quad \cos x = -\frac{5}{6}
\]
5. Substituting Values into the Expression:
Now that we have the values of \( \sin x \) and \( \cos x \), we can substitute these into the original expression \( \sin\left(\frac{23x}{2}\right) \). Using trigonometric identities, the expression evaluates to:
\[
\sqrt{11} + 1 \over 2\sqrt{3}
\]
Final Answer:
The correct answer is \( \boxed{(B)} \).
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is