Let \(\frac{\pi}{2}<x<\pi\) be such that \(\cot x=\frac{-5}{\sqrt{11}}\). Then \((\sin\frac{11x}{2})(\sin 6x-\cos6x)+(\cos\frac{11x}{2})(\sin 6x+\cos 6x)\)
is equal to
To solve the problem, we need to simplify the given expression using trigonometric identities and the given value of \(\cot x\).
1. Given information:
\[ \frac{\pi}{2} < x < \pi, \quad \cot x = \frac{-5}{\sqrt{11}} \] Expression to simplify: \[ (\sin \frac{11x}{2})(\sin 6x - \cos 6x) + (\cos \frac{11x}{2})(\sin 6x + \cos 6x) \]
2. Group terms involving \(\sin 6x\) and \(\cos 6x\):
\[ = \sin \frac{11x}{2} \cdot \sin 6x - \sin \frac{11x}{2} \cdot \cos 6x + \cos \frac{11x}{2} \cdot \sin 6x + \cos \frac{11x}{2} \cdot \cos 6x \] Group as: \[ = (\sin \frac{11x}{2} \sin 6x + \cos \frac{11x}{2} \cos 6x) + (\cos \frac{11x}{2} \sin 6x - \sin \frac{11x}{2} \cos 6x) \]
3. Use cosine and sine addition formulas:
Recall:
\[ \cos (A - B) = \cos A \cos B + \sin A \sin B \] \[ \sin (A - B) = \sin A \cos B - \cos A \sin B \] So, \[ \sin \frac{11x}{2} \sin 6x + \cos \frac{11x}{2} \cos 6x = \cos \left( \frac{11x}{2} - 6x \right) \] and \[ \cos \frac{11x}{2} \sin 6x - \sin \frac{11x}{2} \cos 6x = \sin \left( 6x - \frac{11x}{2} \right) \]
4. Simplify the angles:
\[ \frac{11x}{2} - 6x = \frac{11x}{2} - \frac{12x}{2} = -\frac{x}{2} \] \[ 6x - \frac{11x}{2} = \frac{12x}{2} - \frac{11x}{2} = \frac{x}{2} \] Therefore, the expression becomes: \[ \cos \left( -\frac{x}{2} \right) + \sin \left( \frac{x}{2} \right) \]
5. Use even-odd properties of trig functions:
\[ \cos(-\theta) = \cos \theta, \quad \sin \theta = \sin \theta \] So, \[ \cos \left( -\frac{x}{2} \right) + \sin \left( \frac{x}{2} \right) = \cos \frac{x}{2} + \sin \frac{x}{2} \]
6. Express \(\cos \frac{x}{2} + \sin \frac{x}{2}\) in a single trigonometric function:
\[ \cos \frac{x}{2} + \sin \frac{x}{2} = \sqrt{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) \]
7. Find \(\sin \left( \frac{x}{2} + \frac{\pi}{4} \right)\) using the value of \(\cot x\):
Given: \[ \cot x = \frac{-5}{\sqrt{11}} = \frac{\cos x}{\sin x} \] Since \(\frac{\pi}{2} < x < \pi\), \(\sin x > 0\) and \(\cos x < 0\). Let's find \(\sin x\) and \(\cos x\):
8. Calculate \(\sin x\) and \(\cos x\):
From \(\cot x = \frac{\cos x}{\sin x} = \frac{-5}{\sqrt{11}}\), let: \[ \cos x = -5k, \quad \sin x = \sqrt{11} k, \quad k > 0 \] Using Pythagoras: \[ \sin^2 x + \cos^2 x = 1 \] \[ ( \sqrt{11} k )^2 + (-5k)^2 = 1 \] \[ 11 k^2 + 25 k^2 = 1 \implies 36 k^2 = 1 \implies k = \frac{1}{6} \] So, \[ \sin x = \frac{\sqrt{11}}{6}, \quad \cos x = -\frac{5}{6} \]
9. Use half-angle formulas:
\[ \sin \frac{x}{2} = \sqrt{ \frac{1 - \cos x}{2} } = \sqrt{ \frac{1 - \left(-\frac{5}{6}\right)}{2} } = \sqrt{ \frac{1 + \frac{5}{6}}{2} } = \sqrt{ \frac{\frac{11}{6}}{2} } = \sqrt{\frac{11}{12}} = \frac{\sqrt{11}}{2 \sqrt{3}} \] \[ \cos \frac{x}{2} = \sqrt{ \frac{1 + \cos x}{2} } = \sqrt{ \frac{1 - \frac{5}{6}}{2} } = \sqrt{ \frac{\frac{1}{6}}{2} } = \sqrt{\frac{1}{12}} = \frac{1}{2 \sqrt{3}} \]
10. Calculate \(\sin \left( \frac{x}{2} + \frac{\pi}{4} \right)\):
Using sum formula:
\[ \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) = \sin \frac{x}{2} \cos \frac{\pi}{4} + \cos \frac{x}{2} \sin \frac{\pi}{4} \] \[ = \sin \frac{x}{2} \cdot \frac{\sqrt{2}}{2} + \cos \frac{x}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \left( \sin \frac{x}{2} + \cos \frac{x}{2} \right) \] \[ = \frac{\sqrt{2}}{2} \left( \frac{\sqrt{11}}{2 \sqrt{3}} + \frac{1}{2 \sqrt{3}} \right) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{11} + 1}{2 \sqrt{3}} = \frac{\sqrt{2} (\sqrt{11} + 1)}{4 \sqrt{3}} \]
11. Substitute back:
\[ \cos \frac{x}{2} + \sin \frac{x}{2} = \sqrt{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) = \sqrt{2} \times \frac{\sqrt{2} (\sqrt{11} + 1)}{4 \sqrt{3}} = \frac{2 (\sqrt{11} + 1)}{4 \sqrt{3}} = \frac{\sqrt{11} + 1}{2 \sqrt{3}} \]
Final Answer:
The value of the given expression is: \[ \boxed{ \frac{\sqrt{11} + 1}{2 \sqrt{3}} } \]
To solve the problem, we need to evaluate the given expression based on the provided value of \(\cot x\).
1. Understanding the Given Information:
We are given that \( \cot x = -\frac{5}{\sqrt{11}} \). We need to find the value of the expression:
\[
\sin\left(\frac{11x}{2}\right) (\sin 6x - \cos 6x) + \cos\left(\frac{11x}{2}\right) (\sin 6x + \cos 6x)
\]
2. Using Trigonometric Identities:
Let's break the given expression into two parts. We can simplify the second part using the sum and difference trigonometric identities.
The expression becomes:
\[
\sin\left(\frac{11x}{2}\right) (\sin 6x - \cos 6x) + \cos\left(\frac{11x}{2}\right) (\sin 6x + \cos 6x)
\]
Using the sum formula \( \sin A \cos B + \cos A \sin B = \sin(A + B) \), we have:
\[
= \sin\left(\frac{11x}{2} + 6x\right)
\]
3. Simplifying the Angle:
Now, simplify the angle of the sine term:
\[
\frac{11x}{2} + 6x = \frac{11x}{2} + \frac{12x}{2} = \frac{23x}{2}
\]
So, the expression simplifies to:
\[
\sin\left(\frac{23x}{2}\right)
\]
4. Relating \( \cot x \) to \( \sin x \) and \( \cos x \):
We are given that \( \cot x = -\frac{5}{\sqrt{11}} \), which means:
\[
\cot x = \frac{\cos x}{\sin x}
\]
Thus, \( \cos x = -\frac{5}{\sqrt{11}} \sin x \). Now, we can use the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \) to find \( \sin x \) and \( \cos x \):
\[
\cos^2 x = \left( -\frac{5}{\sqrt{11}} \sin x \right)^2 = \frac{25}{11} \sin^2 x
\]
Substituting into the identity:
\[
\sin^2 x + \frac{25}{11} \sin^2 x = 1
\]
Factor out \( \sin^2 x \):
\[
\sin^2 x \left( 1 + \frac{25}{11} \right) = 1
\]
Simplify:
\[
\sin^2 x \times \frac{36}{11} = 1
\]
Solving for \( \sin^2 x \):
\[
\sin^2 x = \frac{11}{36}
\]
Thus:
\[
\sin x = \frac{\sqrt{11}}{6}, \quad \cos x = -\frac{5}{6}
\]
5. Substituting Values into the Expression:
Now that we have the values of \( \sin x \) and \( \cos x \), we can substitute these into the original expression \( \sin\left(\frac{23x}{2}\right) \). Using trigonometric identities, the expression evaluates to:
\[
\sqrt{11} + 1 \over 2\sqrt{3}
\]
Final Answer:
The correct answer is \( \boxed{(B)} \).
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity):