Let
\[ E = \sin \frac{11x}{2} (\sin 6x - \cos 6x) + \cos \frac{11x}{2} (\sin 6x + \cos 6x). \]
Simplify using trigonometric identities:
\[ E = \sin \frac{11x}{2} \sin 6x - \sin \frac{11x}{2} \cos 6x + \cos \frac{11x}{2} \sin 6x + \cos \frac{11x}{2} \cos 6x. \]
Grouping terms:
\[ E = \left( \sin 6x \sin \frac{11x}{2} + \cos 6x \cos \frac{11x}{2} \right) + \left( \sin 6x \cos \frac{11x}{2} - \cos 6x \sin \frac{11x}{2} \right). \]
Simplify further:
\[ E = \cos \left( 6x - \frac{11x}{2} \right) + \sin \left( 6x - \frac{11x}{2} \right). \] \[ E = \cos \frac{x}{2} + \sin \frac{x}{2}. \]
Squaring both sides:
\[ E^2 = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2 \cos \frac{x}{2} \sin \frac{x}{2}. \] \[ E^2 = 1 + \sin x. \]
Since \( \frac{\pi}{2} < x < \pi \) and \( \sin x = \frac{\sqrt{11}}{6} \), we get:
\[ E^2 = 1 + \frac{\sqrt{11}}{6}. \] \[ E = \sqrt{\frac{11 + 1}{2 \sqrt{3}}}. \]
Final Answer:
\[ \frac{\sqrt{11} + 1}{2 \sqrt{3}} \]
The direction cosines of two lines are connected by the relations \( 1 + m - n = 0 \) and \( lm - 2mn + nl = 0 \). If \( \theta \) is the acute angle between those lines, then \( \cos \theta = \) ?