The strength of a conjugate base is inversely related to the strength of its corresponding acid. This means that as the acid becomes weaker, its conjugate base becomes stronger. The strength of an acid is represented by its dissociation constant, \(K_a\). A lower \(K_a\) value indicates a weaker acid.
Given the \(K_a\) values:
From these values, \(HCN\) has the smallest \(K_a\) value. Therefore, it is the weakest acid among the given options, making its conjugate base, \(CN^-\), the strongest.
Let's summarize why \(HCN\) is the correct answer:
Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)

Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)

Match the following with their pKa values 
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
Acid is any hydrogen-containing substance that is capable of donating a proton (hydrogen ion) to another substance. Base is an ion or molecule capable of accepting a hydrogen ion from acid.
| Physical Properties | ACIDS | BASES |
| Taste | Sour | Bitter |
| Colour on Litmus paper | Turns blue litmus red | Turns red litmus blue |
| Ions produced on dissociation | H+ | OH- |
| pH | <7 (less than 7) | >7 (more than 7) |
| Strong acids | HCl, HNO3, H2SO4 | NaOH, KOH |
| Weak Acids | CH3COOH, H3PO4, H2CO3 | NH4OH |
| Type of Reaction | Acid | Bases |
| Reaction with Metals | Acid + Metal → Salt + Hydrogen gas (H2) E.g., Zn(s)+ dil. H2SO4 → ZnSO4 (Zinc Sulphate) + H2 | Base + Metal → Salt + Hydrogen gas (H2) E.g., 2NaOH +Zn → Na2ZnO2 (Sodium zincate) + H2 |
| Reaction with hydrogen carbonates (bicarbonate) and carbonates | Metal carbonate/Metal hydrogen carbonate + Acid → Salt + Carbon dioxide + Water E.g., HCl+NaOH → NaCl+ H2O 2. Na2CO3+ 2 HCl(aq) →2NaCl(aq)+ H2O(l) + CO2(g) 3. Na2CO3+ 2H2SO4(aq) →2Na2SO4(aq)+ H2O(l) + CO2(g) 4. NaHCO3+ HCl → NaCl+ H2O+ CO2 | Base+ Carbonate/ bicarbonate → No reaction |
| Neutralisation Reaction | Base + Acid → Salt + Water E.g., NaOH(aq) + HCl(aq) → NaCl(aq) + H2O(l) | Base + Acid → Salt + Water E.g., CaO+ HCl (l) → CaCl2 (aq)+ H2O (l) |
| Reaction with Oxides | Metal oxide + Acid → Salt + Water E.g., CaO+ HCl (l) → CaCl2 (aq)+ H2O (l) | Non- Metallic oxide + Base → Salt + Water E.g., Ca(OH)2+ CO2 → CaCO3+ H2O |
| Dissolution in Water | Acid gives H+ ions in water. E.g., HCl → H+ + Cl- HCl + H2O → H3O+ + Cl– | Base gives OH- ions in water. |
Read more on Acids, Bases and Salts