We are given:
\[
y = a \sin^3 t, \quad x = a \cos^3 t
\]
To find \( \frac{dy}{dx} \), we use the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
\]
First, calculate \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \):
1. **Differentiating \( y = a \sin^3 t \) with respect to \( t \):**
\[
\frac{dy}{dt} = 3a \sin^2 t \cdot \cos t
\]
2. **Differentiating \( x = a \cos^3 t \) with respect to \( t \):**
\[
\frac{dx}{dt} = -3a \cos^2 t \cdot \sin t
\]
Thus, we have:
\[
\frac{dy}{dx} = \frac{3a \sin^2 t \cdot \cos t}{-3a \cos^2 t \cdot \sin t} = -\frac{\sin t}{\cos t} = -\tan t
\]
Now, substitute \( t = \frac{3\pi}{4} \) into the equation:
\[
\frac{dy}{dx} = -\tan\left( \frac{3\pi}{4} \right)
\]
Since \( \tan\left( \frac{3\pi}{4} \right) = -1 \), we get:
\[
\frac{dy}{dx} = -(-1) = 1
\]
Thus, the correct answer is \( 1 \), which corresponds to option (3).