We are given:
\[
y = \frac{\cos x}{1 + \sin x}
\]
Now, to find \( \frac{dy}{dx} \), we will use the quotient rule of differentiation, which states:
\[
\frac{dy}{dx} = \frac{(v \cdot u' - u \cdot v')}{v^2}
\]
Where \( u = \cos x \) and \( v = 1 + \sin x \), so their derivatives are:
\( u' = -\sin x \) and \( v' = \cos x \).
Applying the quotient rule:
\[
\frac{dy}{dx} = \frac{(1 + \sin x)(-\sin x) - \cos x (\cos x)}{(1 + \sin x)^2}
\]
Simplifying:
\[
\frac{dy}{dx} = \frac{-\sin x - \sin^2 x - \cos^2 x}{(1 + \sin x)^2}
\]
Now using the identity \( \sin^2 x + \cos^2 x = 1 \):
\[
\frac{dy}{dx} = \frac{-\sin x - 1}{(1 + \sin x)^2} = \frac{-1}{1 + \sin x}
\]
Thus, the correct answer is option (b) \( \frac{dy}{dx} = \frac{-1}{1 + \sin x} \).