1. Understand the integral:
We need to evaluate \( \int \frac{\sin x}{3 + 4 \cos^2 x} dx \).
2. Use substitution:
Let \( u = \cos x \), then \( du = -\sin x \, dx \) or \( -du = \sin x \, dx \).
The integral becomes:
\[ \int \frac{\sin x}{3 + 4 \cos^2 x} dx = -\int \frac{du}{3 + 4u^2} \]
3. Rewrite the denominator:
\[ 3 + 4u^2 = 4\left(\frac{3}{4} + u^2\right) = 4\left(\left(\frac{\sqrt{3}}{2}\right)^2 + u^2\right) \]
4. Apply the standard integral formula:
\[ \int \frac{1}{a^2 + t^2} dt = \frac{1}{a} \tan^{-1}\left(\frac{t}{a}\right) + C \]
Here, \( a = \frac{\sqrt{3}}{2} \) and \( t = u \), so:
\[ -\int \frac{du}{4\left(\left(\frac{\sqrt{3}}{2}\right)^2 + u^2\right)} = -\frac{1}{4} \cdot \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{u}{\frac{\sqrt{3}}{2}}\right) + C = -\frac{1}{2\sqrt{3}} \tan^{-1}\left(\frac{2u}{\sqrt{3}}\right) + C \]
5. Substitute back \( u = \cos x \):
\[ -\frac{1}{2\sqrt{3}} \tan^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right) + C \]
Correct Answer: (A) \( -\frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C \)
Let $I = \int \frac{\sin x}{3 + 4\cos^2 x} \, dx$. Substitute $u = \cos x$, so $du = -\sin x \, dx$.
The integral becomes: \[ I = -\int \frac{1}{3 + 4u^2} \, du. \] Write $3 + 4u^2$ as $a^2 + u^2$ with $a^2 = 3$: \[ I = -\frac{1}{\sqrt{3}} \int \frac{1}{1 + \left(\frac{2u}{\sqrt{3}}\right)^2} \, du. \] Substitute back, and the integral simplifies to: \[ I = \frac{1}{2\sqrt{3}} \tan^{-1}\left(\frac{2\cos x}{\sqrt{3}}\right) + C. \]
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: