Step 1: Simplify the integrand.
Rewrite the terms using base 2:
\[
8^{1+x} = (2^3)^{1+x} = 2^{3(1+x)} = 2^{3 + 3x}, \quad 4^{1+x} = (2^2)^{1+x} = 2^{2(1+x)} = 2^{2 + 2x}, \quad 2^{2x} = (2^2)^x = 2^{2x}
\]
\[
\frac{8^{1+x} + 4^{1+x}}{2^{2x}} = \frac{2^{3 + 3x} + 2^{2 + 2x}}{2^{2x}} = 2^{3 + 3x - 2x} + 2^{2 + 2x - 2x} = 2^{3 + x} + 2^2 = 2^3 \cdot 2^x + 4 = 8 \cdot 2^x + 4
\]
So the integral becomes:
\[
\int (8 \cdot 2^x + 4) dx
\]
Step 2: Integrate term by term.
- First term: \(\int 8 \cdot 2^x dx\):
\[
\int 8 \cdot 2^x dx = 8 \int 2^x dx = 8 \int e^{x \ln 2} dx = 8 \cdot \frac{e^{x \ln 2}}{\ln 2} = 8 \cdot \frac{2^x}{\ln 2}
\]
(Note: \(\ln 2 = \log_e 2\), and the options use \(\log 2\), which is interpreted as the natural logarithm in this context, consistent with calculus conventions.)
- Second term: \(\int 4 dx\):
\[
\int 4 dx = 4x + C_2
\]
Combine:
\[
\int (8 \cdot 2^x + 4) dx = 8 \cdot \frac{2^x}{\ln 2} + 4x + C
\]
Step 3: Match with the options.
The result is:
\[
8 \cdot \frac{2^x}{\log 2} + 4x + C
\]
This matches option (3) exactly, confirming the solution is correct.
Final Answer:
\[
\boxed{3}
\]