We are asked to find the value of the expression \( \int \frac{1}{\sqrt{3+x^2}+\sqrt{1+x^2}} \, dx - 3 \log \left( \sqrt{3} \right) \). The presence of constant options indicates that this is a definite integral. Based on analysis of the options, it is likely that the intended problem involved an integral from -1 to 1 with a factor of 2 in the numerator. We will solve this inferred problem.
Let the expression to be evaluated be:
\[ E = \int_{-1}^{1} \frac{2}{\sqrt{3+x^2}+\sqrt{1+x^2}} \, dx - 3 \log \left( \sqrt{3} \right) \]
To solve the integral, we first rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator. The resulting integral is then solved using the standard formula:
\[ \int \sqrt{a^2+x^2} \, dx = \frac{x}{2}\sqrt{a^2+x^2} + \frac{a^2}{2} \log \left| x + \sqrt{a^2+x^2} \right| + C \]
Step 1: Let's first evaluate the integral part. Let \( I = \int_{-1}^{1} \frac{2}{\sqrt{3+x^2}+\sqrt{1+x^2}} \, dx \). We rationalize the integrand.
\[ \frac{2}{\sqrt{3+x^2}+\sqrt{1+x^2}} \times \frac{\sqrt{3+x^2}-\sqrt{1+x^2}}{\sqrt{3+x^2}-\sqrt{1+x^2}} = \frac{2(\sqrt{3+x^2}-\sqrt{1+x^2})}{(3+x^2)-(1+x^2)} \] \[ = \frac{2(\sqrt{3+x^2}-\sqrt{1+x^2})}{2} = \sqrt{3+x^2}-\sqrt{1+x^2} \]
Step 2: The integral simplifies to:
\[ I = \int_{-1}^{1} (\sqrt{3+x^2} - \sqrt{1+x^2}) \, dx \]
Step 3: We find the antiderivative of the integrand using the standard formula.
For \( \int \sqrt{3+x^2} dx \), we have \( a^2 = 3 \). The integral is:
\[ \frac{x}{2}\sqrt{3+x^2} + \frac{3}{2} \log(x + \sqrt{3+x^2}) \]
For \( \int \sqrt{1+x^2} dx \), we have \( a^2 = 1 \). The integral is:
\[ \frac{x}{2}\sqrt{1+x^2} + \frac{1}{2} \log(x + \sqrt{1+x^2}) \]
Step 4: The antiderivative \(F(x)\) of \( \sqrt{3+x^2} - \sqrt{1+x^2} \) is:
\[ F(x) = \left( \frac{x}{2}\sqrt{3+x^2} + \frac{3}{2} \log(x + \sqrt{3+x^2}) \right) - \left( \frac{x}{2}\sqrt{1+x^2} + \frac{1}{2} \log(x + \sqrt{1+x^2}) \right) \]
Step 5: Evaluate \( F(x) \) at the limits of integration, \(x=1\) and \(x=-1\).
At \( x = 1 \):
\[ F(1) = \left( \frac{1}{2}\sqrt{3+1} + \frac{3}{2} \log(1 + \sqrt{3+1}) \right) - \left( \frac{1}{2}\sqrt{1+1} + \frac{1}{2} \log(1 + \sqrt{1+1}) \right) \] \[ F(1) = \left( \frac{1}{2}(2) + \frac{3}{2} \log(3) \right) - \left( \frac{\sqrt{2}}{2} + \frac{1}{2} \log(1 + \sqrt{2}) \right) = 1 + \frac{3}{2}\log(3) - \frac{\sqrt{2}}{2} - \frac{1}{2}\log(1+\sqrt{2}) \]
At \( x = -1 \):
\[ F(-1) = \left( \frac{-1}{2}\sqrt{3+1} + \frac{3}{2} \log(-1 + \sqrt{3+1}) \right) - \left( \frac{-1}{2}\sqrt{1+1} + \frac{1}{2} \log(-1 + \sqrt{1+1}) \right) \] \[ F(-1) = \left( \frac{-1}{2}(2) + \frac{3}{2} \log(1) \right) - \left( -\frac{\sqrt{2}}{2} + \frac{1}{2} \log(\sqrt{2}-1) \right) \]
Since \( \log(1) = 0 \) and \( \log(\sqrt{2}-1) = \log\left(\frac{1}{\sqrt{2}+1}\right) = -\log(\sqrt{2}+1) \):
\[ F(-1) = -1 - \left( -\frac{\sqrt{2}}{2} - \frac{1}{2} \log(1+\sqrt{2}) \right) = -1 + \frac{\sqrt{2}}{2} + \frac{1}{2}\log(1+\sqrt{2}) \]
Step 6: Compute the definite integral \( I = F(1) - F(-1) \).
\[ I = \left( 1 + \frac{3}{2}\log(3) - \frac{\sqrt{2}}{2} - \frac{1}{2}\log(1+\sqrt{2}) \right) - \left( -1 + \frac{\sqrt{2}}{2} + \frac{1}{2}\log(1+\sqrt{2}) \right) \] \[ I = 1 + \frac{3}{2}\log(3) - \frac{\sqrt{2}}{2} - \frac{1}{2}\log(1+\sqrt{2}) + 1 - \frac{\sqrt{2}}{2} - \frac{1}{2}\log(1+\sqrt{2}) \] \[ I = 2 - \sqrt{2} + \frac{3}{2}\log(3) - \log(1+\sqrt{2}) \]
Now, we evaluate the full expression \( E = I - 3 \log(\sqrt{3}) \). Note that \( 3 \log(\sqrt{3}) = 3 \log(3^{1/2}) = \frac{3}{2}\log(3) \).
\[ E = \left( 2 - \sqrt{2} + \frac{3}{2}\log(3) - \log(1+\sqrt{2}) \right) - \frac{3}{2}\log(3) \] \[ E = 2 - \sqrt{2} - \log(1+\sqrt{2}) \]
The value of the expression is \( 2 - \sqrt{2} - \log \left( 1 + \sqrt{2} \right) \).
```
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 