Use integration by parts:
Let \(u = x\), \(dv = e^{2x} dx\)
Then, \(du = dx\), \(v = \frac{1}{2}e^{2x}\)
\[
\int x e^{2x} dx = x \cdot \frac{1}{2}e^{2x} - \int \frac{1}{2}e^{2x} dx = \frac{1}{2}x e^{2x} - \frac{1}{4}e^{2x}
\]
Evaluate from 0 to 1:
\[
I = \left[\frac{1}{2}x e^{2x} - \frac{1}{4}e^{2x}\right]_0^1 = \left(\frac{1}{2}e^2 - \frac{1}{4}e^2\right) - (0 - \frac{1}{4}) = \frac{1}{4}e^2 + \frac{1}{4} = \frac{1}{4}(e^2 + 1)
\]