In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
To determine the current in the RL circuit at the given instant:
1. Circuit Equation:
The governing equation is:
\[
V = L\frac{di}{dt} + IR
\]
Given values:
- \( V = 12 \) V
- \( L = 3 \) H
- \( R = 12 \) Ω
- \( \frac{di}{dt} = -8 \) A/s (current decreasing)
2. Calculation:
\[
12 = 3(-8) + I(12)
\]
\[
12 = -24 + 12I
\]
\[
36 = 12I
\]
\[
I = 3 \text{ A}
\]
The current at this instant is 3 A.
State Kirchhoff's law related to electrical circuits. In the given metre bridge, balance point is obtained at D. On connecting a resistance of 12 ohm parallel to S, balance point shifts to D'. Find the values of resistances R and S.
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .