
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
To solve this problem, we need to understand the behavior of the circuit which includes a source of voltage, a resistor, and an inductor. The circuit given is an RL circuit, and the rate of change of current is given as 8 A/s when the resistance \( R \) is 12 Ω. We want to find the current at this instant.
The formula for the induced electromotive force (emf) in an inductor is given by the equation:
\(E = -L \frac{dI}{dt}\)
where:
Plugging the values into the formula, we get:
\(E = -3 \times 8 = -24 \, \text{V}\)
In a steady state, the voltage across the resistor and the inductor equals the supply voltage:
\(V - IR = L \frac{dI}{dt}\)
Given that the supply voltage \( V \) is 12 V, and substituting for \( R = 12 \, \Omega \) and \( \frac{dI}{dt} = 8 \, \text{A/s} \), we use the relation:
\(12 - IR = -24\)
Rearranging the equation gives:
\(IR = 12 + 24 = 36\)
Thus, the current \( I \) can be found as:
\(I = \frac{36}{12} = 3 \, \text{A}\)
Therefore, the current in the circuit at the instant described is 3 A.
To determine the current in the RL circuit at the given instant:
1. Circuit Equation:
The governing equation is:
\[
V = L\frac{di}{dt} + IR
\]
Given values:
- \( V = 12 \) V
- \( L = 3 \) H
- \( R = 12 \) Ω
- \( \frac{di}{dt} = -8 \) A/s (current decreasing)
2. Calculation:
\[
12 = 3(-8) + I(12)
\]
\[
12 = -24 + 12I
\]
\[
36 = 12I
\]
\[
I = 3 \text{ A}
\]
The current at this instant is 3 A.
Two p-n junction diodes \(D_1\) and \(D_2\) are connected as shown in the figure. \(A\) and \(B\) are input signals and \(C\) is the output. The given circuit will function as a _______. 
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
The op-amps in the following circuit are ideal. The voltage gain of the circuit is __________ (round off to the nearest integer). 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 