Two batteries of emf's \(3V \& 6V\) and internal resistances 0.2 Ω \(\&\) 0.4 Ω are connected in parallel. This combination is connected to a 4 Ω resistor. Find:
(i) the equivalent emf of the combination
(ii) the equivalent internal resistance of the combination
(iii) the current drawn from the combination
For two batteries connected in parallel, the equivalent emf \( E_{\text{eq}} \) and equivalent internal resistance \( r_{\text{eq}} \) are given by: \[ E_{\text{eq}} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2} \] \[ r_{\text{eq}} = \frac{r_1 r_2}{r_1 + r_2} \] Given:
\( E_1 = 3 \, \text{V} \), \( r_1 = 0.2 \, \Omega \)
\( E_2 = 6 \, \text{V} \), \( r_2 = 0.4 \, \Omega \)
(i) Equivalent emf: \[ E_{\text{eq}} = \frac{(3 \times 0.4) + (6 \times 0.2)}{0.2 + 0.4} = \frac{1.2 + 1.2}{0.6} = \frac{2.4}{0.6} = 4 \, \text{V} \]
(ii) Equivalent internal resistance: \[ r_{\text{eq}} = \frac{0.2 \times 0.4}{0.2 + 0.4} = \frac{0.08}{0.6} = 0.133 \, \Omega \]
(iii) Current drawn from the combination: The total resistance of the circuit is: \[ R_{\text{total}} = r_{\text{eq}} + R = 0.133 + 4 = 4.133 \, \Omega \] The current \( I \) is: \[ I = \frac{E_{\text{eq}}}{R_{\text{total}}} = \frac{4}{4.133} = 0.968 \, \text{A} \] ---
निम्नलिखित गद्यांश की सप्रसंग व्याख्या कीजिए :
‘‘पुर्ज़े खोलकर फिर ठीक करना उतना कठिन काम नहीं है, लोग सीखते भी हैं, सिखाते भी हैं, अनाड़ी के हाथ में चाहे घड़ी मत दो पर जो घड़ीसाज़ी का इम्तहान पास कर आया है उसे तो देखने दो । साथ ही यह भी समझा दो कि आपको स्वयं घड़ी देखना, साफ़ करना और सुधारना आता है कि नहीं । हमें तो धोखा होता है कि परदादा की घड़ी जेब में डाले फिरते हो, वह बंद हो गई है, तुम्हें न चाबी देना आता है न पुर्ज़े सुधारना तो भी दूसरों को हाथ नहीं लगाने देते इत्यादि ।’’