We are given the matrix:
\[
A = \begin{pmatrix}
a + b + 2c & a & b \\
c & b + c + 2a & b \\
c & a & c + a + 2b
\end{pmatrix}
\]
To find the determinant of this matrix, we use cofactor expansion along the first row:
\[
\text{det}(A) = (a + b + 2c) \cdot \begin{vmatrix} b + c + 2a & b \\ a & c + a + 2b \end{vmatrix} - a \cdot \begin{vmatrix} c & b \\ c & c + a + 2b \end{vmatrix} + b \cdot \begin{vmatrix} c & b + c + 2a \\ c & a \end{vmatrix}
\]
After performing the calculations for each of the 2x2 determinants and simplifying the terms, we find that:
\[
\text{det}(A) = 2(a + b + c)^3
\]
Thus, the value of the determinant is \( 2(a + b + c)^3 \).