Question:

If f(x)={6x2+14x3+2x+3,0<x<1x2+1,1x<2 f(x) = \begin{cases} \frac{6x^2 + 1}{4x^3 + 2x + 3}, & 0 < x < 1 \\ x^2 + 1, & 1 \leq x < 2 \end{cases} then 02f(x)dx=? \int_{0}^{2} f(x) \,dx = ?

Show Hint

For integrals involving rational functions, check if the numerator is a derivative of the denominator. For polynomial functions, use standard integration rules.
Updated On: Mar 25, 2025
  • 12log3+103 \frac{1}{2} \log 3 + \frac{10}{3}
  • 12log3103 \frac{1}{2} \log 3 - \frac{10}{3}
  • 12log3+133 \frac{1}{2} \log 3 + \frac{13}{3}
  • 12log3+203 \frac{1}{2} \log 3 + \frac{20}{3}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Splitting the integral
We need to compute: I=02f(x)dx. I = \int_{0}^{2} f(x) \,dx. Since f(x) f(x) is defined in two parts, we split the integral: I=016x2+14x3+2x+3dx+12(x2+1)dx. I = \int_{0}^{1} \frac{6x^2 + 1}{4x^3 + 2x + 3} \,dx + \int_{1}^{2} (x^2 + 1) \,dx. Step 2: Evaluating the first integral
Consider: I1=016x2+14x3+2x+3dx. I_1 = \int_{0}^{1} \frac{6x^2 + 1}{4x^3 + 2x + 3} \,dx. Observing the denominator: 4x3+2x+3. 4x^3 + 2x + 3. Differentiating: ddx(4x3+2x+3)=12x2+2. \frac{d}{dx} (4x^3 + 2x + 3) = 12x^2 + 2. Rewriting the numerator: 6x2+1=12(12x2+2). 6x^2 + 1 = \frac{1}{2} (12x^2 + 2). Thus, rewriting the integral: I1=0112(12x2+2)4x3+2x+3dx. I_1 = \int_{0}^{1} \frac{\frac{1}{2} (12x^2 + 2)}{4x^3 + 2x + 3} \,dx. =1201d(4x3+2x+3)4x3+2x+3. = \frac{1}{2} \int_{0}^{1} \frac{d(4x^3 + 2x + 3)}{4x^3 + 2x + 3}. =12log4x3+2x+301. = \frac{1}{2} \log |4x^3 + 2x + 3| \Big|_{0}^{1}. Evaluating at limits: I1=12log4(1)3+2(1)+34(0)3+2(0)+3. I_1 = \frac{1}{2} \log \frac{|4(1)^3 + 2(1) + 3|}{|4(0)^3 + 2(0) + 3|}. =12log4+2+33. = \frac{1}{2} \log \frac{4 + 2 + 3}{3}. =12log93=12log3. = \frac{1}{2} \log \frac{9}{3} = \frac{1}{2} \log 3. Step 3: Evaluating the second integral
I2=12(x2+1)dx. I_2 = \int_{1}^{2} (x^2 + 1) \,dx. =[x33+x]12. = \left[ \frac{x^3}{3} + x \right]_{1}^{2}. =(233+2)(133+1). = \left( \frac{2^3}{3} + 2 \right) - \left( \frac{1^3}{3} + 1 \right). =(83+2)(13+1). = \left( \frac{8}{3} + 2 \right) - \left( \frac{1}{3} + 1 \right). =(83+63)(13+33). = \left( \frac{8}{3} + \frac{6}{3} \right) - \left( \frac{1}{3} + \frac{3}{3} \right). =14343=103. = \frac{14}{3} - \frac{4}{3} = \frac{10}{3}. Step 4: Conclusion
Adding both integrals: I=12log3+103. I = \frac{1}{2} \log 3 + \frac{10}{3}. Thus, the correct answer is: 12log3+103. \frac{1}{2} \log 3 + \frac{10}{3}.
Was this answer helpful?
0
0