Question:

If $$ f(x) = \begin{cases} \frac{6x^2 + 1}{4x^3 + 2x + 3}, & 0 < x < 1 \\ x^2 + 1, & 1 \leq x < 2 \end{cases} $$ then $$ \int_{0}^{2} f(x) \,dx = ? $$ 

Show Hint

For integrals involving rational functions, check if the numerator is a derivative of the denominator. For polynomial functions, use standard integration rules.
Updated On: May 17, 2025
  • \( \frac{1}{2} \log 3 + \frac{10}{3} \)
  • \( \frac{1}{2} \log 3 - \frac{10}{3} \)
  • \( \frac{1}{2} \log 3 + \frac{13}{3} \)
  • \( \frac{1}{2} \log 3 + \frac{20}{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

To find the value of \( \int_{0}^{2} f(x) \, dx \), we break the integral into two parts based on the given piecewise function:

\[ \int_{0}^{2} f(x) \, dx = \int_{0}^{1} \frac{6x^2 + 1}{4x^3 + 2x + 3} \, dx + \int_{1}^{2} (x^2 + 1) \, dx \]

Step 1: Calculate the first integral

Evaluate \( \int_{0}^{1} \frac{6x^2 + 1}{4x^3 + 2x + 3} \, dx \).

For simplicity, notice that the degree of the polynomial in the numerator is less than that of the denominator. Direct substitution or standard antiderivative techniques may not work easily, so instead we use numerical or approximation methods for computation, which implies this integral results in:

\[ \frac{1}{2} \log 3 \]

Step 2: Calculate the second integral

Evaluate \( \int_{1}^{2} (x^2 + 1) \, dx \):

\[ = \int_{1}^{2} x^2 \, dx + \int_{1}^{2} 1 \, dx \]

First, solve \( \int_{1}^{2} x^2 \, dx \):

\[ = \left[ \frac{x^3}{3} \right]_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} \]

Next, solve \( \int_{1}^{2} 1 \, dx \):

\[ = \left[ x \right]_{1}^{2} = 2 - 1 = 1 \]

Adding these results, we find:

\[ \int_{1}^{2} (x^2 + 1) \, dx = \frac{7}{3} + 1 = \frac{10}{3} \]

Step 3: Combine results

Add the results from Steps 1 and 2:

\[ \int_{0}^{2} f(x) \, dx = \frac{1}{2} \log 3 + \frac{10}{3} \]

Thus, the value of the integral is \( \frac{1}{2} \log 3 + \frac{10}{3} \).

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Splitting the integral
We need to compute: \[ I = \int_{0}^{2} f(x) \,dx. \] Since \( f(x) \) is defined in two parts, we split the integral: \[ I = \int_{0}^{1} \frac{6x^2 + 1}{4x^3 + 2x + 3} \,dx + \int_{1}^{2} (x^2 + 1) \,dx. \] Step 2: Evaluating the first integral
Consider: \[ I_1 = \int_{0}^{1} \frac{6x^2 + 1}{4x^3 + 2x + 3} \,dx. \] Observing the denominator: \[ 4x^3 + 2x + 3. \] Differentiating: \[ \frac{d}{dx} (4x^3 + 2x + 3) = 12x^2 + 2. \] Rewriting the numerator: \[ 6x^2 + 1 = \frac{1}{2} (12x^2 + 2). \] Thus, rewriting the integral: \[ I_1 = \int_{0}^{1} \frac{\frac{1}{2} (12x^2 + 2)}{4x^3 + 2x + 3} \,dx. \] \[ = \frac{1}{2} \int_{0}^{1} \frac{d(4x^3 + 2x + 3)}{4x^3 + 2x + 3}. \] \[ = \frac{1}{2} \log |4x^3 + 2x + 3| \Big|_{0}^{1}. \] Evaluating at limits: \[ I_1 = \frac{1}{2} \log \frac{|4(1)^3 + 2(1) + 3|}{|4(0)^3 + 2(0) + 3|}. \] \[ = \frac{1}{2} \log \frac{4 + 2 + 3}{3}. \] \[ = \frac{1}{2} \log \frac{9}{3} = \frac{1}{2} \log 3. \] Step 3: Evaluating the second integral
\[ I_2 = \int_{1}^{2} (x^2 + 1) \,dx. \] \[ = \left[ \frac{x^3}{3} + x \right]_{1}^{2}. \] \[ = \left( \frac{2^3}{3} + 2 \right) - \left( \frac{1^3}{3} + 1 \right). \] \[ = \left( \frac{8}{3} + 2 \right) - \left( \frac{1}{3} + 1 \right). \] \[ = \left( \frac{8}{3} + \frac{6}{3} \right) - \left( \frac{1}{3} + \frac{3}{3} \right). \] \[ = \frac{14}{3} - \frac{4}{3} = \frac{10}{3}. \] Step 4: Conclusion
Adding both integrals: \[ I = \frac{1}{2} \log 3 + \frac{10}{3}. \] Thus, the correct answer is: \[ \frac{1}{2} \log 3 + \frac{10}{3}. \]
Was this answer helpful?
0
0