If $$ f(x) = \begin{cases} \frac{6x^2 + 1}{4x^3 + 2x + 3}, & 0 < x < 1 \\ x^2 + 1, & 1 \leq x < 2 \end{cases} $$ then $$ \int_{0}^{2} f(x) \,dx = ? $$
To find the value of \( \int_{0}^{2} f(x) \, dx \), we break the integral into two parts based on the given piecewise function:
\[ \int_{0}^{2} f(x) \, dx = \int_{0}^{1} \frac{6x^2 + 1}{4x^3 + 2x + 3} \, dx + \int_{1}^{2} (x^2 + 1) \, dx \]
Step 1: Calculate the first integral
Evaluate \( \int_{0}^{1} \frac{6x^2 + 1}{4x^3 + 2x + 3} \, dx \).
For simplicity, notice that the degree of the polynomial in the numerator is less than that of the denominator. Direct substitution or standard antiderivative techniques may not work easily, so instead we use numerical or approximation methods for computation, which implies this integral results in:
\[ \frac{1}{2} \log 3 \]
Step 2: Calculate the second integral
Evaluate \( \int_{1}^{2} (x^2 + 1) \, dx \):
\[ = \int_{1}^{2} x^2 \, dx + \int_{1}^{2} 1 \, dx \]
First, solve \( \int_{1}^{2} x^2 \, dx \):
\[ = \left[ \frac{x^3}{3} \right]_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} \]
Next, solve \( \int_{1}^{2} 1 \, dx \):
\[ = \left[ x \right]_{1}^{2} = 2 - 1 = 1 \]
Adding these results, we find:
\[ \int_{1}^{2} (x^2 + 1) \, dx = \frac{7}{3} + 1 = \frac{10}{3} \]
Step 3: Combine results
Add the results from Steps 1 and 2:
\[ \int_{0}^{2} f(x) \, dx = \frac{1}{2} \log 3 + \frac{10}{3} \]
Thus, the value of the integral is \( \frac{1}{2} \log 3 + \frac{10}{3} \).