For integrals involving rational functions, check if the numerator is a derivative of the denominator. For polynomial functions, use standard integration rules.
Step 1: Splitting the integral
We need to compute:
I=∫02f(x)dx.
Since f(x) is defined in two parts, we split the integral:
I=∫014x3+2x+36x2+1dx+∫12(x2+1)dx.Step 2: Evaluating the first integral
Consider:
I1=∫014x3+2x+36x2+1dx.
Observing the denominator:
4x3+2x+3.
Differentiating:
dxd(4x3+2x+3)=12x2+2.
Rewriting the numerator:
6x2+1=21(12x2+2).
Thus, rewriting the integral:
I1=∫014x3+2x+321(12x2+2)dx.=21∫014x3+2x+3d(4x3+2x+3).=21log∣4x3+2x+3∣01.
Evaluating at limits:
I1=21log∣4(0)3+2(0)+3∣∣4(1)3+2(1)+3∣.=21log34+2+3.=21log39=21log3.Step 3: Evaluating the second integral I2=∫12(x2+1)dx.=[3x3+x]12.=(323+2)−(313+1).=(38+2)−(31+1).=(38+36)−(31+33).=314−34=310.Step 4: Conclusion
Adding both integrals:
I=21log3+310.
Thus, the correct answer is:
21log3+310.