To evaluate the limit \( \lim_{n \to \infty} \frac{17^7 + 27^7 + \dots + n^{77}}{n^{78}} \), we start by analyzing the series in the numerator. Consider the general term \( k^{77} \) where \( k \) ranges from 17 to \( n \). The numerator can be rewritten as a sum:
\( \sum_{k=17}^{n} k^{77} \).
The key is to approximate this sum using integral calculus for large \( n \). The sum \( \sum_{k=17}^{n} k^{77} \) can be closely approximated by the integral:
\( \int_{17}^{n} x^{77} \, dx \).
Calculating the integral, we have:
\( \int x^{77} \, dx = \frac{x^{78}}{78} + C \).
Evaluating at bounds:
\( \int_{17}^{n} x^{77} \, dx = \left[\frac{x^{78}}{78}\right]_{17}^{n} = \frac{n^{78}}{78} - \frac{17^{78}}{78} \).
The expression for the limit becomes:
\( \lim_{n \to \infty} \frac{\frac{n^{78}}{78} - \frac{17^{78}}{78}}{n^{78}} = \lim_{n \to \infty} \left(\frac{1}{78} - \frac{17^{78}}{78n^{78}}\right) \).
As \( n \to \infty \), the term \( \frac{17^{78}}{78n^{78}} \to 0 \). Hence, the limit simplifies to:
\( \frac{1}{78} \).
Therefore, the value of the limit is \( \frac{1}{78} \).
If $$ f(x) = \begin{cases} \frac{6x^2 + 1}{4x^3 + 2x + 3}, & 0 < x < 1 \\ x^2 + 1, & 1 \leq x < 2 \end{cases} $$ then $$ \int_{0}^{2} f(x) \,dx = ? $$