Crystal Field Stabilization Energy (CFSE) is a measure of the stability provided by a ligand to a transition metal ion in a coordination complex. It depends on the distribution of electrons in the d-orbitals of the metal ion, which is influenced by the geometry and the type of ligands.
To determine in which of the complexes the CFSE, \(\Delta_0\), will be equal to zero, we need to examine the oxidation state and the d-electron configuration of iron in each complex:
\([Fe(NH_3)_6]Br_2\):
Oxidation State: +2
d-electron Configuration: \(d^6\)
\([Fe(en)_3]Cl_3\):
Oxidation State: +3
d-electron Configuration: \(d^5\)
\(K_4[Fe(CN)_6]\):
Oxidation State: +2
d-electron Configuration: \(d^6\)
\(K_3[Fe(SCN)_6]\):
Oxidation State: +3
d-electron Configuration: \(d^5\)
The CFSE depends on the arrangement of d-electrons in the t2g and eg orbitals. In the case of a \(d^5\) configuration, the orbitals are often half-filled, leading to a uniform distribution of electrons in both t2g and eg\ orbitals. For high spin configurations, like Fe\(^{3+}\) in \([Fe(SCN)_6]^{3-}\), there are three electrons in t2g and two in eg\), which results in a CFSE of zero:
d⁵=(0×t2g+0×eg
Therefore, the complex \(K_3[Fe(SCN)_6]\) has a CFSE, \(\Delta_0\), of zero.

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
