We are given that \( \angle Q = 90^\circ \), so \( \triangle PQR \) is a right triangle. Also, we are given that \( \tan P = \frac{1}{\sqrt{3}} \). We need to find the value of \( \sin P \cos R + \cos P \sin R \).
Since \( \angle P + \angle R = 90^\circ \) (because the sum of angles in a triangle is \( 180^\circ \), and \( \angle Q = 90^\circ \)), we know that:
\[
\angle R = 90^\circ - \angle P.
\]
We can use the trigonometric identity:
\[
\sin(P + R) = \sin P \cos R + \cos P \sin R.
\]
Since \( P + R = 90^\circ \), we have:
\[
\sin(P + R) = \sin 90^\circ = 1.
\]
Thus,
\[
\sin P \cos R + \cos P \sin R = 1.
\]
Conclusion:
The value of \( \sin P \cos R + \cos P \sin R \) is \( 1 \).