Step 1: Recall the value of \( \tan 45^\circ \).
We know that \( \tan 45^\circ = 1 \).
Step 2: Substitute the value of \( \tan 45^\circ \).
Substituting \( \tan 45^\circ = 1 \) into the given expression, we get:
\[
\frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ} = \frac{1 - 1^2}{1 + 1^2} = \frac{0}{2} = 0.
\]
Step 3: Conclude the result.
Thus, the value of \( \frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ} \) is \( 0 \).