Step 1: Use the complementary angle identity.
We know that:
\[
\sin 71^\circ = \cos 19^\circ.
\]
This simplifies the expression to:
\[
1 + \sec 19^\circ \sin 71^\circ = 1 + \sec 19^\circ \cos 19^\circ.
\]
Step 2: Express \( \sec 19^\circ \).
Since \( \sec \theta = \frac{1}{\cos \theta} \), we can substitute:
\[
1 + \frac{1}{\cos 19^\circ} \cdot \cos 19^\circ = 1 + 1 = 2.
\]
Step 3: Conclude the result.
Thus, the value of \( 1 + \sec 19^\circ \sin 71^\circ \) is \( 2 \).