Question:

What is the value of \( \csc 31^\circ \sec 59^\circ \)?

Show Hint

Use the identity \( \sin \theta = \cos (90^\circ - \theta) \) to simplify trigonometric expressions involving complementary angles.
Updated On: May 13, 2025
  • 0
  • 1
  • Undefined
  • 2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We are asked to compute \( \csc 31^\circ \sec 59^\circ \). Recall that \( \csc \theta = \frac{1}{\sin \theta} \) and \( \sec \theta = \frac{1}{\cos \theta} \). Thus: \[ \csc 31^\circ \sec 59^\circ = \frac{1}{\sin 31^\circ} \times \frac{1}{\cos 59^\circ}. \] Using the identity \( \sin \theta = \cos (90^\circ - \theta) \), we can write: \[ \sin 31^\circ = \cos 59^\circ. \] Therefore: \[ \csc 31^\circ \sec 59^\circ = \frac{1}{\cos 59^\circ} \times \frac{1}{\cos 59^\circ} = 1. \] Thus, the value of \( \csc 31^\circ \sec 59^\circ \) is \( 1 \).
Was this answer helpful?
0
0