To determine the intensity of the electromagnetic wave, we can use the formula for the intensity of an electromagnetic wave, which is given by:
\(I = \frac{1}{2} c \epsilon_0 E_m^2\)
where:
Substituting these values into the formula, we get:
\(I = \frac{1}{2} \times 3 \times 10^8 \, \text{m/s} \times 9 \times 10^{-12} \, \text{C}^2 \text{N}^{-1} \text{m}^{-2} \times (600)^2 \, \text{V}^2/\text{m}^2\)
Simplifying further:
\(I = \frac{1}{2} \times 3 \times 9 \times 600^2 \times 10^8 \times 10^{-12}\) \(I = \frac{1}{2} \times 27 \times 360000 \times 10^{-4}\) \(I = \frac{1}{2} \times 9720000 \times 10^{-4}\) \(I = \frac{1}{2} \times 972 \, \text{W/m}^2\) \(I = 486 \, \text{W/m}^2\)
Thus, the intensity of the associated light beam is \(486 \, \text{W/m}^2\). Therefore, the correct answer is: 486
The intensity \( I \) of an electromagnetic wave is given by:
\[I = \frac{1}{2} \varepsilon_0 E_0^2 c\]
where \( E_0 = 600 \, \text{Vm}^{-1} \) and \( c = 3 \times 10^8 \, \text{m/s} \).
Substitute the values:
\[I = \frac{1}{2} \times 9 \times 10^{-12} \times (600)^2 \times 3 \times 10^8\]
\[= \frac{9}{2} \times 36 \times 3 = 486 \, \text{W/m}^2\]
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.