To determine the intensity of the electromagnetic wave, we can use the formula for the intensity of an electromagnetic wave, which is given by:
\(I = \frac{1}{2} c \epsilon_0 E_m^2\)
where:
Substituting these values into the formula, we get:
\(I = \frac{1}{2} \times 3 \times 10^8 \, \text{m/s} \times 9 \times 10^{-12} \, \text{C}^2 \text{N}^{-1} \text{m}^{-2} \times (600)^2 \, \text{V}^2/\text{m}^2\)
Simplifying further:
\(I = \frac{1}{2} \times 3 \times 9 \times 600^2 \times 10^8 \times 10^{-12}\) \(I = \frac{1}{2} \times 27 \times 360000 \times 10^{-4}\) \(I = \frac{1}{2} \times 9720000 \times 10^{-4}\) \(I = \frac{1}{2} \times 972 \, \text{W/m}^2\) \(I = 486 \, \text{W/m}^2\)
Thus, the intensity of the associated light beam is \(486 \, \text{W/m}^2\). Therefore, the correct answer is: 486
The intensity \( I \) of an electromagnetic wave is given by:
\[I = \frac{1}{2} \varepsilon_0 E_0^2 c\]
where \( E_0 = 600 \, \text{Vm}^{-1} \) and \( c = 3 \times 10^8 \, \text{m/s} \).
Substitute the values:
\[I = \frac{1}{2} \times 9 \times 10^{-12} \times (600)^2 \times 3 \times 10^8\]
\[= \frac{9}{2} \times 36 \times 3 = 486 \, \text{W/m}^2\]
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Electromagnetic waves carry energy but not momentum.
Reason (R): Mass of a photon is zero. In the light of the above statements.
choose the most appropriate answer from the options given below:
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: