The intensity \( I \) of an electromagnetic wave is given by:
\[I = \frac{1}{2} \varepsilon_0 E_0^2 c\]
where \( E_0 = 600 \, \text{Vm}^{-1} \) and \( c = 3 \times 10^8 \, \text{m/s} \).
Substitute the values:
\[I = \frac{1}{2} \times 9 \times 10^{-12} \times (600)^2 \times 3 \times 10^8\]
\[= \frac{9}{2} \times 36 \times 3 = 486 \, \text{W/m}^2\]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).