To determine the intensity of the electromagnetic wave, we can use the formula for the intensity of an electromagnetic wave, which is given by:
\(I = \frac{1}{2} c \epsilon_0 E_m^2\)
where:
Substituting these values into the formula, we get:
\(I = \frac{1}{2} \times 3 \times 10^8 \, \text{m/s} \times 9 \times 10^{-12} \, \text{C}^2 \text{N}^{-1} \text{m}^{-2} \times (600)^2 \, \text{V}^2/\text{m}^2\)
Simplifying further:
\(I = \frac{1}{2} \times 3 \times 9 \times 600^2 \times 10^8 \times 10^{-12}\) \(I = \frac{1}{2} \times 27 \times 360000 \times 10^{-4}\) \(I = \frac{1}{2} \times 9720000 \times 10^{-4}\) \(I = \frac{1}{2} \times 972 \, \text{W/m}^2\) \(I = 486 \, \text{W/m}^2\)
Thus, the intensity of the associated light beam is \(486 \, \text{W/m}^2\). Therefore, the correct answer is: 486
The intensity \( I \) of an electromagnetic wave is given by:
\[I = \frac{1}{2} \varepsilon_0 E_0^2 c\]
where \( E_0 = 600 \, \text{Vm}^{-1} \) and \( c = 3 \times 10^8 \, \text{m/s} \).
Substitute the values:
\[I = \frac{1}{2} \times 9 \times 10^{-12} \times (600)^2 \times 3 \times 10^8\]
\[= \frac{9}{2} \times 36 \times 3 = 486 \, \text{W/m}^2\]
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.

Which of the following options is correct?