In the figure $DE \parallel BC$. If $AD = 3\,\text{cm}$, $DE = 4\,\text{cm}$ and $DB = 1.5\,\text{cm}$, then the measure of $BC$ will be:
Step 1: Use similarity in the triangle
Since $DE \parallel BC$, triangles $\triangle ADE$ and $\triangle ABC$ are similar. Hence the corresponding sides are proportional:
\[
\frac{DE}{BC}=\frac{AD}{AB}.
\]
Step 2: Compute $AB$ and substitute
Given $AD=3\,\text{cm}$ and $DB=1.5\,\text{cm}$, so
\[
AB=AD+DB=3+1.5=4.5\,\text{cm}.
\]
Also $DE=4\,\text{cm}$. Using the ratio:
\[
\frac{4}{BC}=\frac{3}{4.5}\Rightarrow BC=\frac{4\times 4.5}{3}=4\times 1.5=6\,\text{cm}.
\]
Step 3: Conclusion
Therefore, the length of $BC$ is $6\,\text{cm}$.
The correct answer is option (D).
In the figure, the value of $\angle P$ will be:
In the figure, $DE \parallel AC$ and $DF \parallel AE$. Prove that $\dfrac{BF}{FE} = \dfrac{BE}{EC}$.
If \( \triangle ODC \sim \triangle OBA \) and \( \angle BOC = 125^\circ \), then \( \angle DOC = ? \)
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.