In the figure $DE \parallel BC$. If $AD = 3\,\text{cm}$, $DE = 4\,\text{cm}$ and $DB = 1.5\,\text{cm}$, then the measure of $BC$ will be:
Step 1: Use similarity in the triangle
Since $DE \parallel BC$, triangles $\triangle ADE$ and $\triangle ABC$ are similar. Hence the corresponding sides are proportional:
\[
\frac{DE}{BC}=\frac{AD}{AB}.
\]
Step 2: Compute $AB$ and substitute
Given $AD=3\,\text{cm}$ and $DB=1.5\,\text{cm}$, so
\[
AB=AD+DB=3+1.5=4.5\,\text{cm}.
\]
Also $DE=4\,\text{cm}$. Using the ratio:
\[
\frac{4}{BC}=\frac{3}{4.5}\Rightarrow BC=\frac{4\times 4.5}{3}=4\times 1.5=6\,\text{cm}.
\]
Step 3: Conclusion
Therefore, the length of $BC$ is $6\,\text{cm}$.
The correct answer is option (D).
In the following figure \(\angle\)MNP = 90\(^\circ\), seg NQ \(\perp\) seg MP, MQ = 9, QP = 4, find NQ. 
Solve the following sub-questions (any four): In \( \triangle ABC \), \( DE \parallel BC \). If \( DB = 5.4 \, \text{cm} \), \( AD = 1.8 \, \text{cm} \), \( EC = 7.2 \, \text{cm} \), then find \( AE \). 
In the following figure, XY \(||\) seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.
Activity:
2AX = 3BX (Given)
\[\therefore \frac{AX}{BX} = \frac{3}{\boxed{2}} \ \\ \frac{AX + BX}{BX} = \frac{3 + 2}{2} \quad \text{(by componendo)} \ \\ \frac{BA}{BX} = \frac{5}{2} \quad \dots \text{(I)} [6pt] \\ \text{Now } \triangle BCA \sim \triangle BYX ; (\boxed{\text{AA}} \text{ test of similarity}) [4pt] \\ \therefore \frac{BA}{BX} = \frac{AC}{XY} \quad \text{(corresponding sides of similar triangles)} [4pt] \\ \frac{5}{2} = \frac{AC}{9} \quad \text{from (I)} [4pt] \\ \therefore AC = \boxed{22.5}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.