Step 1: Understanding the Concept:
When a line parallel to one side of a triangle intersects the other two sides, it creates a smaller triangle that is similar to the original triangle. The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Step 2: Key Formula or Approach:
1. First, prove \(\triangle\)ADE \(\sim\) \(\triangle\)ABC.
2. Then, use the theorem on areas of similar triangles:
\[ \frac{A(\triangle ADE)}{A(\triangle ABC)} = \left(\frac{DE}{BC}\right)^2 = \left(\frac{AD}{AB}\right)^2 = \left(\frac{AE}{AC}\right)^2 \]
Step 3: Detailed Explanation:
Given:
\[\begin{array}{rl} \bullet & \text{DE \(||\) BC} \\ \bullet & \text{DE = 4 cm, BC = 8 cm} \\ \bullet & \text{Area(\(\triangle\)ADE) = 25 cm\(^2\)} \\ \end{array}\]
In \(\triangle\)ADE and \(\triangle\)ABC:
\[\begin{array}{rl} \bullet & \text{\(\angle\)ADE = \(\angle\)ABC (Corresponding angles, since DE \(||\) BC)} \\ \bullet & \text{\(\angle\)AED = \(\angle\)ACB (Corresponding angles, since DE \(||\) BC)} \\ \bullet & \text{\(\angle\)DAE = \(\angle\)BAC (Common angle)} \\ \end{array}\]
Therefore, by AA similarity criterion, \(\triangle\)ADE \(\sim\) \(\triangle\)ABC.
Now, using the theorem on the areas of similar triangles:
\[ \frac{A(\triangle ADE)}{A(\triangle ABC)} = \left(\frac{DE}{BC}\right)^2 \]
Substitute the given values:
\[ \frac{25}{A(\triangle ABC)} = \left(\frac{4}{8}\right)^2 \]
\[ \frac{25}{A(\triangle ABC)} = \left(\frac{1}{2}\right)^2 \]
\[ \frac{25}{A(\triangle ABC)} = \frac{1}{4} \]
Cross-multiply to solve for A(\(\triangle\)ABC):
\[ A(\triangle ABC) = 25 \times 4 \]
\[ A(\triangle ABC) = 100 \text{ cm}^2 \]
Step 4: Final Answer:
The area of \(\triangle\)ABC is 100 cm\(^2\).
In the following figure \(\angle\)MNP = 90\(^\circ\), seg NQ \(\perp\) seg MP, MQ = 9, QP = 4, find NQ.
Solve the following sub-questions (any four): In \( \triangle ABC \), \( DE \parallel BC \). If \( DB = 5.4 \, \text{cm} \), \( AD = 1.8 \, \text{cm} \), \( EC = 7.2 \, \text{cm} \), then find \( AE \).
In the following figure, XY \(||\) seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.
Activity:
2AX = 3BX (Given)
\[\therefore \frac{AX}{BX} = \frac{3}{\boxed{2}} \ \\ \frac{AX + BX}{BX} = \frac{3 + 2}{2} \quad \text{(by componendo)} \ \\ \frac{BA}{BX} = \frac{5}{2} \quad \dots \text{(I)} [6pt] \\ \text{Now } \triangle BCA \sim \triangle BYX ; (\boxed{\text{AA}} \text{ test of similarity}) [4pt] \\ \therefore \frac{BA}{BX} = \frac{AC}{XY} \quad \text{(corresponding sides of similar triangles)} [4pt] \\ \frac{5}{2} = \frac{AC}{9} \quad \text{from (I)} [4pt] \\ \therefore AC = \boxed{22.5}\]
सरस्वती विद्यालय, कोल्हापुर में मनाए गए 'शिक्षक दिवस' समारोह का 70 से 80 शब्दों में वृत्तांत लेखन कीजिए।
(वृत्तांत में स्थल, काल, घटना का उल्लेख होना अनिवार्य है)
निम्नलिखित जानकारी के आधार पर 50 से 60 शब्दों में विज्ञापन तैयार कीजिए :