Step 1: Understanding the Concept:
As established in the previous question, since DE \(||\) BC, \(\triangle\)ADE \(\sim\) \(\triangle\)ABC. We can find the ratio of their areas using the given ratio of their sides. The area of the trapezium DBCE is the difference between the area of the larger triangle (\(\triangle\)ABC) and the smaller triangle (\(\triangle\)ADE).
Step 2: Key Formula or Approach:
1. \( \frac{A(\triangle ADE)}{A(\triangle ABC)} = \left(\frac{DE}{BC}\right)^2 \)
2. \( A(\square DBCE) = A(\triangle ABC) - A(\triangle ADE) \)
Step 3: Detailed Explanation:
Given:
\[ \frac{DE}{BC} = \frac{3}{5} \]
Since \(\triangle\)ADE \(\sim\) \(\triangle\)ABC, we have the ratio of their areas:
\[ \frac{A(\triangle ADE)}{A(\triangle ABC)} = \left(\frac{DE}{BC}\right)^2 = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \]
This means that if the area of \(\triangle\)ADE is 9k for some constant k, then the area of \(\triangle\)ABC is 25k.
Now, let's find the area of the trapezium DBCE.
\[ A(\square DBCE) = A(\triangle ABC) - A(\triangle ADE) \]
\[ A(\square DBCE) = 25k - 9k = 16k \]
We need to find the ratio of A(\(\triangle\)ADE) to A(\(\square\)DBCE).
\[ \frac{A(\triangle ADE)}{A(\square DBCE)} = \frac{9k}{16k} = \frac{9}{16} \]
Step 4: Final Answer:
The ratio A(\(\triangle\)ADE) : A(\(\square\)DBCE) is 9 : 16.
In the following figure \(\angle\)MNP = 90\(^\circ\), seg NQ \(\perp\) seg MP, MQ = 9, QP = 4, find NQ. 
Solve the following sub-questions (any four): In \( \triangle ABC \), \( DE \parallel BC \). If \( DB = 5.4 \, \text{cm} \), \( AD = 1.8 \, \text{cm} \), \( EC = 7.2 \, \text{cm} \), then find \( AE \). 
In the following figure, XY \(||\) seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.
Activity:
2AX = 3BX (Given)
\[\therefore \frac{AX}{BX} = \frac{3}{\boxed{2}} \ \\ \frac{AX + BX}{BX} = \frac{3 + 2}{2} \quad \text{(by componendo)} \ \\ \frac{BA}{BX} = \frac{5}{2} \quad \dots \text{(I)} [6pt] \\ \text{Now } \triangle BCA \sim \triangle BYX ; (\boxed{\text{AA}} \text{ test of similarity}) [4pt] \\ \therefore \frac{BA}{BX} = \frac{AC}{XY} \quad \text{(corresponding sides of similar triangles)} [4pt] \\ \frac{5}{2} = \frac{AC}{9} \quad \text{from (I)} [4pt] \\ \therefore AC = \boxed{22.5}\]
In the following figure \(\triangle\) ABC, B-D-C and BD = 7, BC = 20, then find \(\frac{A(\triangle ABD)}{A(\triangle ABC)}\). 
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\)) 
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.
निम्नलिखित पठित गद्यांश पढ़कर दी गई सूचनाओं के अनुसार कृतियाँ कीजिए :
आँख खुली तो मैंने अपने-आपको एक बिस्तर पर पाया। इर्द-गिर्द कुछ परिचित-अपरिचित चेहरे खड़े थे। आँख खुलते ही उनके चेहरों पर उत्सुकता की लहर दौड़ गई। मैंने कराहते हुए पूछा "मैं कहाँ हूँ ?"
"आप सार्वजनिक अस्पताल के प्राइवेट वार्ड में हैं। आपका ऐक्सिडेंट हो गया था। सिर्फ पैर का फ्रैक्चर हुआ है। अब घबराने की कोई बात नहीं।" एक चेहरा इतनी तेजी से जवाब देता है, लगता है मेरे होश आने तक वह इसलिए रुका रहा। अब मैं अपनी टाँगों की ओर देखता हूँ। मेरी एक टाँग अपनी जगह पर सही-सलामत थी और दूसरी टाँग रेत की थैली के सहारे एक स्टैंड पर लटक रही थी। मेरे दिमाग में एक नये मुहावरे का जन्म हुआ। 'टाँग का टूटना' यानी सार्वजनिक अस्पताल में कुछ दिन रहना। सार्वजनिक अस्पताल का खयाल आते ही मैं काँप उठा। अस्पताल वैसे ही एक खतरनाक शब्द होता है, फिर यदि उसके साथ सार्वजनिक शब्द चिपका हो तो समझो आत्मा से परमात्मा के मिलन होने का समय आ गया। अब मुझे यूँ लगा कि मेरी टाँग टूटना मात्र एक घटना है और सार्वजनिक अस्पताल में भरती होना दुर्घटना।
(2) उत्तर लिखिए :
