In the following figure \(\angle\)MNP = 90\(^\circ\), seg NQ \(\perp\) seg MP, MQ = 9, QP = 4, find NQ.
Step 1: Understanding the Concept:
In a right-angled triangle, the altitude drawn to the hypotenuse creates two smaller triangles that are similar to the original triangle and to each other. This leads to the geometric mean theorem.
Step 2: Key Formula or Approach:
The theorem of geometric mean states that in a right-angled triangle, the altitude drawn to the hypotenuse is the geometric mean of the two segments it divides the hypotenuse into.
\[ NQ^2 = MQ \times QP \]
Step 3: Detailed Explanation:
Given:
\[\begin{array}{rl} \bullet & \text{\(\triangle MNP\) is a right-angled triangle with \(\angle MNP = 90^\circ\).} \\ \bullet & \text{NQ is the altitude to the hypotenuse MP.} \\ \bullet & \text{MQ = 9} \\ \bullet & \text{QP = 4} \\ \end{array}\]
According to the geometric mean theorem:
\[ NQ^2 = MQ \times QP \]
Substitute the given values:
\[ NQ^2 = 9 \times 4 \]
\[ NQ^2 = 36 \]
Take the square root of both sides:
\[ NQ = \sqrt{36} \]
Since length cannot be negative,
\[ NQ = 6 \]
Step 4: Final Answer:
The length of NQ is 6.
Solve the following sub-questions (any four): In \( \triangle ABC \), \( DE \parallel BC \). If \( DB = 5.4 \, \text{cm} \), \( AD = 1.8 \, \text{cm} \), \( EC = 7.2 \, \text{cm} \), then find \( AE \).
In the following figure, XY \(||\) seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.
Activity:
2AX = 3BX (Given)
\[\therefore \frac{AX}{BX} = \frac{3}{\boxed{2}} \ \\ \frac{AX + BX}{BX} = \frac{3 + 2}{2} \quad \text{(by componendo)} \ \\ \frac{BA}{BX} = \frac{5}{2} \quad \dots \text{(I)} [6pt] \\ \text{Now } \triangle BCA \sim \triangle BYX ; (\boxed{\text{AA}} \text{ test of similarity}) [4pt] \\ \therefore \frac{BA}{BX} = \frac{AC}{XY} \quad \text{(corresponding sides of similar triangles)} [4pt] \\ \frac{5}{2} = \frac{AC}{9} \quad \text{from (I)} [4pt] \\ \therefore AC = \boxed{22.5}\]
рд╕рд░рд╕реНрд╡рддреА рд╡рд┐рджреНрдпрд╛рд▓рдп, рдХреЛрд▓реНрд╣рд╛рдкреБрд░ рдореЗрдВ рдордирд╛рдП рдЧрдП 'рд╢рд┐рдХреНрд╖рдХ рджрд┐рд╡рд╕' рд╕рдорд╛рд░реЛрд╣ рдХрд╛ 70 рд╕реЗ 80 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡реГрддреНрддрд╛рдВрдд рд▓реЗрдЦрди рдХреАрдЬрд┐рдПред
(рд╡реГрддреНрддрд╛рдВрдд рдореЗрдВ рд╕реНрдерд▓, рдХрд╛рд▓, рдШрдЯрдирд╛ рдХрд╛ рдЙрд▓реНрд▓реЗрдЦ рд╣реЛрдирд╛ рдЕрдирд┐рд╡рд╛рд░реНрдп рд╣реИ)
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЬрд╛рдирдХрд╛рд░реА рдХреЗ рдЖрдзрд╛рд░ рдкрд░ 50 рд╕реЗ 60 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡рд┐рдЬреНрдЮрд╛рдкрди рддреИрдпрд╛рд░ рдХреАрдЬрд┐рдП :