In the following figure \(\angle\)MNP = 90\(^\circ\), seg NQ \(\perp\) seg MP, MQ = 9, QP = 4, find NQ. 
Step 1: Understanding the Concept:
In a right-angled triangle, the altitude drawn to the hypotenuse creates two smaller triangles that are similar to the original triangle and to each other. This leads to the geometric mean theorem.
Step 2: Key Formula or Approach:
The theorem of geometric mean states that in a right-angled triangle, the altitude drawn to the hypotenuse is the geometric mean of the two segments it divides the hypotenuse into.
\[ NQ^2 = MQ \times QP \]
Step 3: Detailed Explanation:
Given:
\[\begin{array}{rl} \bullet & \text{\(\triangle MNP\) is a right-angled triangle with \(\angle MNP = 90^\circ\).} \\ \bullet & \text{NQ is the altitude to the hypotenuse MP.} \\ \bullet & \text{MQ = 9} \\ \bullet & \text{QP = 4} \\ \end{array}\]
According to the geometric mean theorem:
\[ NQ^2 = MQ \times QP \]
Substitute the given values:
\[ NQ^2 = 9 \times 4 \]
\[ NQ^2 = 36 \]
Take the square root of both sides:
\[ NQ = \sqrt{36} \]
Since length cannot be negative,
\[ NQ = 6 \]
Step 4: Final Answer:
The length of NQ is 6.
Solve the following sub-questions (any four): In \( \triangle ABC \), \( DE \parallel BC \). If \( DB = 5.4 \, \text{cm} \), \( AD = 1.8 \, \text{cm} \), \( EC = 7.2 \, \text{cm} \), then find \( AE \). 
In the following figure, XY \(||\) seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.
Activity:
2AX = 3BX (Given)
\[\therefore \frac{AX}{BX} = \frac{3}{\boxed{2}} \ \\ \frac{AX + BX}{BX} = \frac{3 + 2}{2} \quad \text{(by componendo)} \ \\ \frac{BA}{BX} = \frac{5}{2} \quad \dots \text{(I)} [6pt] \\ \text{Now } \triangle BCA \sim \triangle BYX ; (\boxed{\text{AA}} \text{ test of similarity}) [4pt] \\ \therefore \frac{BA}{BX} = \frac{AC}{XY} \quad \text{(corresponding sides of similar triangles)} [4pt] \\ \frac{5}{2} = \frac{AC}{9} \quad \text{from (I)} [4pt] \\ \therefore AC = \boxed{22.5}\]
In the following figure \(\triangle\) ABC, B-D-C and BD = 7, BC = 20, then find \(\frac{A(\triangle ABD)}{A(\triangle ABC)}\). 
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\)) 
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.
निम्नलिखित पठित गद्यांश पढ़कर दी गई सूचनाओं के अनुसार कृतियाँ कीजिए :
आँख खुली तो मैंने अपने-आपको एक बिस्तर पर पाया। इर्द-गिर्द कुछ परिचित-अपरिचित चेहरे खड़े थे। आँख खुलते ही उनके चेहरों पर उत्सुकता की लहर दौड़ गई। मैंने कराहते हुए पूछा "मैं कहाँ हूँ ?"
"आप सार्वजनिक अस्पताल के प्राइवेट वार्ड में हैं। आपका ऐक्सिडेंट हो गया था। सिर्फ पैर का फ्रैक्चर हुआ है। अब घबराने की कोई बात नहीं।" एक चेहरा इतनी तेजी से जवाब देता है, लगता है मेरे होश आने तक वह इसलिए रुका रहा। अब मैं अपनी टाँगों की ओर देखता हूँ। मेरी एक टाँग अपनी जगह पर सही-सलामत थी और दूसरी टाँग रेत की थैली के सहारे एक स्टैंड पर लटक रही थी। मेरे दिमाग में एक नये मुहावरे का जन्म हुआ। 'टाँग का टूटना' यानी सार्वजनिक अस्पताल में कुछ दिन रहना। सार्वजनिक अस्पताल का खयाल आते ही मैं काँप उठा। अस्पताल वैसे ही एक खतरनाक शब्द होता है, फिर यदि उसके साथ सार्वजनिक शब्द चिपका हो तो समझो आत्मा से परमात्मा के मिलन होने का समय आ गया। अब मुझे यूँ लगा कि मेरी टाँग टूटना मात्र एक घटना है और सार्वजनिक अस्पताल में भरती होना दुर्घटना।
(2) उत्तर लिखिए :
