In the figure, $DE \parallel AC$ and $DF \parallel AE$. Prove that $\dfrac{BF}{FE} = \dfrac{BE}{EC}$.
Step 1: Apply BPT in $\triangle ABC$.
Since $DE \parallel AC$, by Basic Proportionality Theorem (BPT): \[ \frac{BD}{BA} = \frac{BE}{BC}. (1) \]
Step 2: Apply BPT in $\triangle ABE$.
Since $DF \parallel AE$: \[ \frac{BD}{BA} = \frac{BF}{BE}. (2) \]
Step 3: Equating ratios.
From (1) and (2): \[ \frac{BF}{BE} = \frac{BE}{BC} \;\Rightarrow\; BF = \frac{BE^2}{BC}. \]
Step 4: Express $FE$.
$FE = BE - BF = BE - \frac{BE^2}{BC} = BE\left(1 - \frac{BE}{BC}\right) = BE \cdot \frac{BC - BE}{BC} = BE \cdot \frac{EC}{BC}$.
Step 5: Required ratio.
\[ \frac{BF}{FE} = \frac{\tfrac{BE^2}{BC}}{\tfrac{BE \cdot EC}{BC}} = \frac{BE}{EC}. \] \[ \boxed{\dfrac{BF}{FE} = \dfrac{BE}{EC}} \]
In the figure, the value of $\angle P$ will be:
In the figure $DE \parallel BC$. If $AD = 3\,\text{cm}$, $DE = 4\,\text{cm}$ and $DB = 1.5\,\text{cm}$, then the measure of $BC$ will be:
If \( \triangle ODC \sim \triangle OBA \) and \( \angle BOC = 125^\circ \), then \( \angle DOC = ? \)
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.