In the figure, $DE \parallel AC$ and $DF \parallel AE$. Prove that $\dfrac{BF}{FE} = \dfrac{BE}{EC}$.
Step 1: Apply BPT in $\triangle ABC$.
Since $DE \parallel AC$, by Basic Proportionality Theorem (BPT): \[ \frac{BD}{BA} = \frac{BE}{BC}. (1) \]
Step 2: Apply BPT in $\triangle ABE$.
Since $DF \parallel AE$: \[ \frac{BD}{BA} = \frac{BF}{BE}. (2) \]
Step 3: Equating ratios.
From (1) and (2): \[ \frac{BF}{BE} = \frac{BE}{BC} \;\Rightarrow\; BF = \frac{BE^2}{BC}. \]
Step 4: Express $FE$.
$FE = BE - BF = BE - \frac{BE^2}{BC} = BE\left(1 - \frac{BE}{BC}\right) = BE \cdot \frac{BC - BE}{BC} = BE \cdot \frac{EC}{BC}$.
Step 5: Required ratio.
\[ \frac{BF}{FE} = \frac{\tfrac{BE^2}{BC}}{\tfrac{BE \cdot EC}{BC}} = \frac{BE}{EC}. \] \[ \boxed{\dfrac{BF}{FE} = \dfrac{BE}{EC}} \]
In the following figure \(\angle\)MNP = 90\(^\circ\), seg NQ \(\perp\) seg MP, MQ = 9, QP = 4, find NQ. 
Solve the following sub-questions (any four): In \( \triangle ABC \), \( DE \parallel BC \). If \( DB = 5.4 \, \text{cm} \), \( AD = 1.8 \, \text{cm} \), \( EC = 7.2 \, \text{cm} \), then find \( AE \). 
In the following figure, XY \(||\) seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.
Activity:
2AX = 3BX (Given)
\[\therefore \frac{AX}{BX} = \frac{3}{\boxed{2}} \ \\ \frac{AX + BX}{BX} = \frac{3 + 2}{2} \quad \text{(by componendo)} \ \\ \frac{BA}{BX} = \frac{5}{2} \quad \dots \text{(I)} [6pt] \\ \text{Now } \triangle BCA \sim \triangle BYX ; (\boxed{\text{AA}} \text{ test of similarity}) [4pt] \\ \therefore \frac{BA}{BX} = \frac{AC}{XY} \quad \text{(corresponding sides of similar triangles)} [4pt] \\ \frac{5}{2} = \frac{AC}{9} \quad \text{from (I)} [4pt] \\ \therefore AC = \boxed{22.5}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]