
For an infinite charged plane
\(E = \frac {σ}{2ε_0}\)
for each value of distance l
\(E_1 = \frac {σ}{2ε_0}\)
\(E_2 = \frac {σ}{2ε_0}\)
Thus,
\(E_1 = E_2 = \frac {σ}{2ε_0}\)
So, the correct option is (C): \(E_1 = E_2 = \frac {σ}{2ε_0}\)
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

As shown below, bob A of a pendulum having massless string of length \( R \) is released from \( 60^\circ \) to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take \( g \) as acceleration due to gravity):


A particle of mass \( m \) and charge \( q \) is fastened to one end \( A \) of a massless string having equilibrium length \( l \), whose other end is fixed at point \( O \). The whole system is placed on a frictionless horizontal plane and is initially at rest. If a uniform electric field is switched on along the direction as shown in the figure, then the speed of the particle when it crosses the x-axis is:
Electric Field is the electric force experienced by a unit charge.
The electric force is calculated using the coulomb's law, whose formula is:
\(F=k\dfrac{|q_{1}q_{2}|}{r^{2}}\)
While substituting q2 as 1, electric field becomes:
\(E=k\dfrac{|q_{1}|}{r^{2}}\)
SI unit of Electric Field is V/m (Volt per meter).