Using the equation:
\[ i = K\theta, \]
At half deflection:
\[ \frac{2}{G + R} = K\theta. \]
Rearranging:
\[ \frac{1}{\theta} = \frac{(G + R)K}{2} = RK + \frac{GK}{2}. \]
From the slope of the graph:
\[ \text{Slope} = K = 0.5 = 5 \times 10^{-1} \, \text{A/division}. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: