In the circuit shown below, the current $i$ flowing through $200\,\Omega$ resistor is ________ mA (rounded off to two decimal places). 

In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.

Eight students (P, Q, R, S, T, U, V, and W) are playing musical chairs. The figure indicates their order of position at the start of the game. They play the game by moving forward in a circle in the clockwise direction.
After the 1st round, the 4th student behind P leaves the game.
After the 2nd round, the 5th student behind Q leaves the game.
After the 3rd round, the 3rd student behind V leaves the game.
After the 4th round, the 4th student behind U leaves the game.
Who all are left in the game after the 4th round?

The identical MOSFETs \( M_1 \) and \( M_2 \) in the circuit given below are ideal and biased in the saturation region. \( M_1 \) and \( M_2 \) have a transconductance \( g_m \) of 5 mS. The input signals (in Volts) are: \[ V_1 = 2.5 + 0.01 \sin \omega t, \quad V_2 = 2.5 - 0.01 \sin \omega t. \] The output signal \( V_3 \) (in Volts) is _________.

The following figures show three curves generated using an iterative algorithm. The total length of the curve generated after 'Iteration n' is:

Consider a part of an electrical network as shown below. Some node voltages, and the current flowing through the \( 3\,\Omega \) resistor are as indicated.
The voltage (in Volts) at node \( X \) is _________.
