Question:

A motor operating on 100 V draws a current of 1 A. If the efficiency of the motor is 91.6%, then the loss of power in units of cal/s is

Show Hint

First, calculate the input power to the motor using \( P_{input} = VI \). Then, use the efficiency to find the output power \( P_{output} = \eta P_{input} \). The power loss is \( P_{loss} = P_{input} - P_{output} \). Finally, convert the power loss from watts (J/s) to calories per second (cal/s) using the conversion factor 1 cal = 4.184 J.
Updated On: Apr 25, 2025
  • 4
  • 8.4
  • 2
  • 6.2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The input power to the motor is given by: \[ P_{input} = V \times I \] where \( V \) is the voltage and \( I \) is the current. Given \( V = 100 \, \text{V} \) and \( I = 1 \, \text{A} \), \[ P_{input} = 100 \, \text{V} \times 1 \, \text{A} = 100 \, \text{W} \] The efficiency \( \eta \) of the motor is given by: \[ \eta = \frac{P_{output}}{P_{input}} \] Given \( \eta = 91.6% = 0.916 \), we can find the output power: \[ P_{output} = \eta \times P_{input} = 0.916 \times 100 \, \text{W} = 91.6 \, \text{W} \] The power loss in the motor is the difference between the input power and the output power: \[ P_{loss} = P_{input} - P_{output} = 100 \, \text{W} - 91.6 \, \text{W} = 8.4 \, \text{W} \] We need to convert the power loss from watts to calories per second (cal/s). 
We know that 1 calorie (cal) is equal to 4.184 Joules (J). 
Since power is the rate of energy transfer (1 W = 1 J/s), we have: \[ 1 \, \text{W} = 1 \, \text{J/s} = \frac{1}{4.184} \, \text{cal/s} \] So, the power loss in cal/s is: \[ P_{loss} (\text{cal/s}) = 8.4 \, \text{W} \times \frac{1}{4.184} \, \text{cal/s/W} \] \[ P_{loss} (\text{cal/s}) \approx 2.0076 \, \text{cal/s} \] Rounding to the nearest whole number, the loss of power is approximately 2 cal/s.

Was this answer helpful?
0
0

Top Questions on Electrical Circuits

View More Questions