The input power to the motor is given by: \[ P_{input} = V \times I \] where \( V \) is the voltage and \( I \) is the current. Given \( V = 100 \, \text{V} \) and \( I = 1 \, \text{A} \), \[ P_{input} = 100 \, \text{V} \times 1 \, \text{A} = 100 \, \text{W} \] The efficiency \( \eta \) of the motor is given by: \[ \eta = \frac{P_{output}}{P_{input}} \] Given \( \eta = 91.6% = 0.916 \), we can find the output power: \[ P_{output} = \eta \times P_{input} = 0.916 \times 100 \, \text{W} = 91.6 \, \text{W} \] The power loss in the motor is the difference between the input power and the output power: \[ P_{loss} = P_{input} - P_{output} = 100 \, \text{W} - 91.6 \, \text{W} = 8.4 \, \text{W} \] We need to convert the power loss from watts to calories per second (cal/s).
We know that 1 calorie (cal) is equal to 4.184 Joules (J).
Since power is the rate of energy transfer (1 W = 1 J/s), we have: \[ 1 \, \text{W} = 1 \, \text{J/s} = \frac{1}{4.184} \, \text{cal/s} \] So, the power loss in cal/s is: \[ P_{loss} (\text{cal/s}) = 8.4 \, \text{W} \times \frac{1}{4.184} \, \text{cal/s/W} \] \[ P_{loss} (\text{cal/s}) \approx 2.0076 \, \text{cal/s} \] Rounding to the nearest whole number, the loss of power is approximately 2 cal/s.
To find the loss of power in units of cal/s for the motor, we need to understand the relationship between input power, output power, efficiency, and power loss. Here is a step-by-step explanation:
Therefore, the power loss in the motor is approximately 2 cal/s, making option 2 the correct answer.
Two p-n junction diodes \(D_1\) and \(D_2\) are connected as shown in the figure. \(A\) and \(B\) are input signals and \(C\) is the output. The given circuit will function as a _______. 
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
The op-amps in the following circuit are ideal. The voltage gain of the circuit is __________ (round off to the nearest integer). 
The switch (S) closes at \( t = 0 \) sec. The time, in sec, the capacitor takes to charge to 50 V is ___________ (round off to one decimal place).
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 