The input power to the motor is given by: \[ P_{input} = V \times I \] where \( V \) is the voltage and \( I \) is the current. Given \( V = 100 \, \text{V} \) and \( I = 1 \, \text{A} \), \[ P_{input} = 100 \, \text{V} \times 1 \, \text{A} = 100 \, \text{W} \] The efficiency \( \eta \) of the motor is given by: \[ \eta = \frac{P_{output}}{P_{input}} \] Given \( \eta = 91.6% = 0.916 \), we can find the output power: \[ P_{output} = \eta \times P_{input} = 0.916 \times 100 \, \text{W} = 91.6 \, \text{W} \] The power loss in the motor is the difference between the input power and the output power: \[ P_{loss} = P_{input} - P_{output} = 100 \, \text{W} - 91.6 \, \text{W} = 8.4 \, \text{W} \] We need to convert the power loss from watts to calories per second (cal/s).
We know that 1 calorie (cal) is equal to 4.184 Joules (J).
Since power is the rate of energy transfer (1 W = 1 J/s), we have: \[ 1 \, \text{W} = 1 \, \text{J/s} = \frac{1}{4.184} \, \text{cal/s} \] So, the power loss in cal/s is: \[ P_{loss} (\text{cal/s}) = 8.4 \, \text{W} \times \frac{1}{4.184} \, \text{cal/s/W} \] \[ P_{loss} (\text{cal/s}) \approx 2.0076 \, \text{cal/s} \] Rounding to the nearest whole number, the loss of power is approximately 2 cal/s.
For the circuit shown in the figure, the active power supplied by the source is ________ W (rounded off to one decimal place).
A signal $V_M = 5\sin(\pi t/3) V$ is applied to the circuit consisting of a switch S and capacitor $C = 0.1 \mu F$, as shown in the figure. The output $V_x$ of the circuit is fed to an ADC having an input impedance consisting of a $10 M\Omega$ resistance in parallel with a $0.1 \mu F$ capacitor. If S is opened at $t = 0.5 s$, the value of $V_x$ at $t = 1.5 s$ will be ________ V (rounded off to two decimal places).
Note: Assume all components are ideal.
In the circuit shown, the switch is opened at $t = 0$ s. The current $i(t)$ at $t = 2$ ms is ________ mA (rounded off to two decimal places).
In the circuit shown, the galvanometer (G) has an internal resistance of $100 \Omega$. The galvanometer current $I_G$ is ________ $\mu A$ (rounded off to the nearest integer).
The circuit given in the figure is driven by a voltage source $V_s = 25\sqrt{2}\angle 30^\circ V$. The system is operating at a frequency of 50 Hz. The transformers are assumed to be ideal. The average power dissipated, in W, in the $50 k\Omega$ resistance is ________ (rounded off to two decimal places).
Match List-I with List-II.
Choose the correct answer from the options given below :