Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
Galvanic cells, also known as voltaic cells, are electrochemical cells in which spontaneous oxidation-reduction reactions produce electrical energy. It converts chemical energy to electrical energy.
It consists of two half cells and in each half cell, a suitable electrode is immersed. The two half cells are connected through a salt bridge. The need for the salt bridge is to keep the oxidation and reduction processes running simultaneously. Without it, the electrons liberated at the anode would get attracted to the cathode thereby stopping the reaction on the whole.