Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).
Galvanic cells, also known as voltaic cells, are electrochemical cells in which spontaneous oxidation-reduction reactions produce electrical energy. It converts chemical energy to electrical energy.
It consists of two half cells and in each half cell, a suitable electrode is immersed. The two half cells are connected through a salt bridge. The need for the salt bridge is to keep the oxidation and reduction processes running simultaneously. Without it, the electrons liberated at the anode would get attracted to the cathode thereby stopping the reaction on the whole.