We are given the standard cell potential \( E^\circ_{\text{Cell}} = 1.1 \, \text{V} \), and the concentrations of \( \text{Zn}^{2+} \) and \( \text{Cu}^{2+} \) are 0.001 M and 0.1 M, respectively. We can use the **Nernst equation** to calculate the cell potential at these concentrations:
\[
E_{\text{Cell}} = E^\circ_{\text{Cell}} - \frac{0.0592}{n} \log \left( \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]} \right)
\]
Where:
- \( E^\circ_{\text{Cell}} = 1.1 \, \text{V} \),
- \( n = 2 \) (since the change in oxidation state for both Zn and Cu is 2),
- \( [\text{Zn}^{2+}] = 0.001 \, \text{M} \),
- \( [\text{Cu}^{2+}] = 0.1 \, \text{M} \).
### Step 1: Apply the Nernst Equation
Substitute the values into the Nernst equation:
\[
E_{\text{Cell}} = 1.1 - \frac{0.0592}{2} \log \left( \frac{0.001}{0.1} \right)
\]
\[
E_{\text{Cell}} = 1.1 - \frac{0.0592}{2} \log(0.01)
\]
\[
E_{\text{Cell}} = 1.1 - \frac{0.0592}{2} \times (-2)
\]
\[
E_{\text{Cell}} = 1.1 + 0.0592
\]
\[
E_{\text{Cell}} = 1.05 \, \text{V}
\]
Thus, the cell potential at the given concentrations is:
\[
\boxed{(A) \, 1.05 \, \text{V}}
\]