Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
To calculate the EMF of the Galvanic cell, we will use the Nernst equation: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0592}{n} \log Q \] Where: \( E^\circ_{\text{cell}} \) is the standard EMF of the cell, \( n \) is the number of electrons transferred, \( Q \) is the reaction quotient.
Step 1: Calculate the standard EMF of the cell (\( E^\circ_{\text{cell}} \))
The standard EMF of the cell is the difference between the standard electrode potentials of the cathode and anode: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] The cathode is Cu (\( E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} \)), The anode is Zn (\( E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} \)). Thus: \[ E^\circ_{\text{cell}} = 0.350 \, \text{V} - (-0.763 \, \text{V}) = 0.350 \, \text{V} + 0.763 \, \text{V} = 1.113 \, \text{V} \]
Step 2: Calculate the reaction quotient (\( Q \))
The reaction quotient \( Q \) is given by:
\[ Q = \frac{[\text{Cu}^{2+}]}{[\text{Zn}^{2+}]} \] Substitute the concentrations of the ions: \[ Q = \frac{0.5}{1.0} = 0.5 \]
Step 3: Apply the Nernst equation
The number of electrons transferred in the reaction is 2, as the half-reaction for both zinc and copper involves 2 electrons. Substitute the values into the Nernst equation: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0592}{n} \log Q \] \[ E_{\text{cell}} = 1.113 \, \text{V} - \frac{0.0592}{2} \log 0.5 \] We know that \( \log 0.5 = -0.3010 \), so: \[ E_{\text{cell}} = 1.113 \, \text{V} - \frac{0.0592}{2} \times (-0.3010) \] \[ E_{\text{cell}} = 1.113 \, \text{V} + 0.0089 \, \text{V} \] \[ E_{\text{cell}} = 1.1219 \, \text{V} \] Thus, the EMF of the Galvanic cell is approximately 1.12 V.
Step 4: Final Answer
The closest answer to our calculated value is: \[ 1.10 \, \text{V} \quad \text{(Option B)} \] Thus, the correct answer is (B) 1.10 V.
\(Pt(s) ∣ H2(g)(1atm) ∣ H+(aq, [H+]=1)\, ∥\, Fe3+(aq), Fe2+(aq) ∣ Pt(s)\)
Given\( E^∘_{Fe^{3+}Fe^{2+}}\)\(=0.771V\) and \(E^∘_{H^{+1/2}H_2}=0\,V,T=298K\)
If the potential of the cell is 0.712V, the ratio of concentration of \(Fe2+\) to \(Fe3+\) is
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $
If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $