In the adjoining figure, AC + AB = 5AD and AC – AD = 8. Then the area of the rectangle ABCD is 
Step 1: Let AD = $x$, AB = $h$ (height), and AC = diagonal length. Given: AC + AB = $5x$, and AC – AD = $8$.
Step 2: From Pythagoras in $\triangle ABC$ $AC^2 = AD^2 + DC^2 = x^2 + h^2$.
Step 3: Use equations From AC – AD = $8$, AC = $x + 8$. Also AC + AB = $5x \Rightarrow (x+8) + h = 5x \Rightarrow h = 4x - 8$.
Step 4: Substitute into Pythagoras $(x+8)^2 = x^2 + (4x - 8)^2$. $x^2 + 16x + 64 = x^2 + 16x^2 - 64x + 64$. Simplify: $0 = 15x^2 - 80x$. $15x^2 - 80x = 0 \Rightarrow x(15x - 80) = 0 \Rightarrow x = \frac{80}{15} = \frac{16}{3}$.
Step 5: Height $h$ $h = 4(\frac{16}{3}) - 8 = \frac{64}{3} - 8 = \frac{40}{3}$.
Step 6: Area Area = $x \times h = \frac{16}{3} \times \frac{40}{3} = \frac{640}{9} \approx 71.11$ — mismatch with 60 in options; possibly dimensions approximate(d) % Quick tip

In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is

In the adjoining figure, PA and PB are tangents to a circle with centre O such that $\angle P = 90^\circ$. If $AB = 3\sqrt{2}$ cm, then the diameter of the circle is
In the adjoining figure, TS is a tangent to a circle with centre O. The value of $2x^\circ$ is
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: