To solve the problem, we need to find the sum of the altitudes in triangle $ABC$ where $AB=AC=50\text{ cm}$ and $BC=80\text{ cm}$.
Triangle $ABC$ is isosceles with $AB=AC$. We first find the area of the triangle using Heron's formula. The semi-perimeter $s$ is:
\( s = \frac{AB + AC + BC}{2} = \frac{50 + 50 + 80}{2} = 90\text{ cm} \)
Using Heron's formula, the area $A$ is:
\( A = \sqrt{s(s-AB)(s-AC)(s-BC)} \)
\( A = \sqrt{90(90-50)(90-50)(90-80)} \)
\( A = \sqrt{90 \times 40 \times 40 \times 10} = \sqrt{1440000} = 1200\text{ cm}^2 \)
The altitude from $A$ to $BC$ (let's call it \( h_a \)) is:
\( h_a = \frac{2 \times A}{BC} = \frac{2 \times 1200}{80} = 30\text{ cm} \)
Since the triangle is isosceles, the altitudes from $B$ to $AC$ (let's call it \( h_b \)) and from $C$ to $AB$ (let's call it \( h_c \)) are equal. Hence, we only need to calculate one of them. Using the area relation again:
\( h_b = \frac{2 \times A}{AC} = \frac{2 \times 1200}{50} = 48\text{ cm} \)
Since \( h_b = h_c \), we have:
\( h_c = 48\text{ cm} \)
Summing all the altitudes gives:
\( h_a + h_b + h_c = 30 + 48 + 48 = 126\text{ cm} \)
The sum of the altitudes is 126 cm, which matches the given range 126,126.
Step 1: Identify the type of triangle.
Given: \[ AB = AC = 50 \text{ cm}, \quad BC = 80 \text{ cm}. \] Since two sides are equal, \( \triangle ABC \) is an isosceles triangle with base \( BC \) and equal sides \( AB \) and \( AC \).
Step 2: Altitude from \( A \) to base \( BC \) (call it \( h_1 \)).
Let \( AD \) be the altitude from vertex \( A \) to side \( BC \). In an isosceles triangle, the altitude from the vertex to the base bisects the base: \[ BD = DC = \frac{BC}{2} = \frac{80}{2} = 40 \text{ cm}. \] Consider right triangle \( \triangle ADC \): \[ AC = 50 \text{ cm (hypotenuse)}, \quad DC = 40 \text{ cm (base)}, \quad AD = h_1 \text{ (height)}. \] Using Pythagoras’ theorem: \[ h_1^2 + 40^2 = 50^2 \] \[ h_1^2 + 1600 = 2500 \] \[ h_1^2 = 2500 - 1600 = 900 \] \[ h_1 = 30 \text{ cm}. \]
Step 3: Find the area of \( \triangle ABC \).
Using base \( BC \) and altitude \( AD \): \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] \[ = \frac{1}{2} \times 80 \times 30 \] \[ = 40 \times 30 = 1200 \text{ cm}^2. \]
Step 4: Altitudes to sides \( AB \) and \( AC \) (call them \( h_2 \) and \( h_3 \)).
Let \( h_2 \) be the altitude to side \( AC \) and \( h_3 \) be the altitude to side \( AB \). Since \( AB = AC \), the corresponding altitudes are equal: \[ h_2 = h_3. \] Using the area formula with base \( AC = 50 \) cm and height \( h_2 \): \[ \text{Area} = \frac{1}{2} \times AC \times h_2 \] \[ 1200 = \frac{1}{2} \times 50 \times h_2 \] \[ 1200 = 25 h_2 \] \[ h_2 = \frac{1200}{25} = 48 \text{ cm}. \] Thus: \[ h_3 = h_2 = 48 \text{ cm}. \]
Step 5: Sum of all three altitudes.
\[ \text{Sum} = h_1 + h_2 + h_3 \] \[ = 30 + 48 + 48 \] \[ = 126 \text{ cm}. \]

In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is

In the adjoining figure, TS is a tangent to a circle with centre O. The value of $2x^\circ$ is
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: