Step 1: Identify the type of triangle.
Given: \[ AB = AC = 50 \text{ cm}, \quad BC = 80 \text{ cm}. \] Since two sides are equal, \( \triangle ABC \) is an isosceles triangle with base \( BC \) and equal sides \( AB \) and \( AC \). Step 2: Altitude from \( A \) to base \( BC \) (call it \( h_1 \)).
Let \( AD \) be the altitude from vertex \( A \) to side \( BC \). In an isosceles triangle, the altitude from the vertex to the base bisects the base: \[ BD = DC = \frac{BC}{2} = \frac{80}{2} = 40 \text{ cm}. \] Consider right triangle \( \triangle ADC \): \[ AC = 50 \text{ cm (hypotenuse)}, \quad DC = 40 \text{ cm (base)}, \quad AD = h_1 \text{ (height)}. \] Using Pythagoras’ theorem: \[ h_1^2 + 40^2 = 50^2 \] \[ h_1^2 + 1600 = 2500 \] \[ h_1^2 = 2500 - 1600 = 900 \] \[ h_1 = 30 \text{ cm}. \] Step 3: Find the area of \( \triangle ABC \).
Using base \( BC \) and altitude \( AD \): \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] \[ = \frac{1}{2} \times 80 \times 30 \] \[ = 40 \times 30 = 1200 \text{ cm}^2. \] Step 4: Altitudes to sides \( AB \) and \( AC \) (call them \( h_2 \) and \( h_3 \)).
Let \( h_2 \) be the altitude to side \( AC \) and \( h_3 \) be the altitude to side \( AB \). Since \( AB = AC \), the corresponding altitudes are equal: \[ h_2 = h_3. \] Using the area formula with base \( AC = 50 \) cm and height \( h_2 \): \[ \text{Area} = \frac{1}{2} \times AC \times h_2 \] \[ 1200 = \frac{1}{2} \times 50 \times h_2 \] \[ 1200 = 25 h_2 \] \[ h_2 = \frac{1200}{25} = 48 \text{ cm}. \] Thus: \[ h_3 = h_2 = 48 \text{ cm}. \] Step 5: Sum of all three altitudes.
\[ \text{Sum} = h_1 + h_2 + h_3 \] \[ = 30 + 48 + 48 \] \[ = 126 \text{ cm}. \]