Let \[ N = (625)^{65} \times (128)^{36}. \] Step 1: Rewrite each number as a power of a prime. We express the given numbers in prime factor form: \[ 625 = 5^4 \quad \text{and} \quad 128 = 2^7. \] Substituting, \[ N = (5^4)^{65} \times (2^7)^{36}. \] Step 2: Simplify the exponents. Applying the law \((a^m)^n = a^{mn}\), \[ (5^4)^{65} = 5^{260}, \quad (2^7)^{36} = 2^{252}. \] Hence, \[ N = 5^{260} \times 2^{252}. \] Step 3: Combine powers of 2 and 5. Pair \(2^{252}\) with \(5^{252}\) to form powers of 10: \[ N = 5^{260} \times 2^{252} = 5^{8} \times (5^{252} \times 2^{252}) = 5^{8} \times 10^{252}. \] Step 4: Evaluate the remaining power. \[ 5^4 = 625 \quad \Rightarrow \quad 5^8 = 625 \times 625 = 390625. \] Therefore, \[ N = 390625 \times 10^{252}. \] This represents the number \(390625\) followed by 252 zeros. Step 5: Find the sum of the digits. All trailing zeros contribute nothing to the digit sum, so we add the digits of 390625: \[ 3 + 9 + 0 + 6 + 2 + 5 = 25. \] Hence, the sum of the digits of the given number is \[ 25. \]
Consider the following statements: Statement I: \( 5 + 8 = 12 \) or 11 is a prime. Statement II: Sun is a planet or 9 is a prime.
Which of the following is true?
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: