To solve the problem, let's first understand the information provided and then apply appropriate principles to find the ratio \(BD : CD\).
Given:
We need to find the ratio \(BD : DC\).
Approach:
Let's denote the sections:
Now applying these in the similar triangles \(BTF\) and \(DTE\), and using the section formula helps identify the coordination changes due to parallel lines and their implications.
Since the transversal \(DF\) is parallel to \(BE\), this preserves the division proportions and implies that:
Thus, \(BD : CD = 11 : 4\).
Hence, the correct option is:
Let \[ \frac{BD}{CD} = x. \] Step 1: Convert the given ratios into segment ratios. From $AD : AT = 4 : 3$, \[ \frac{AD}{AT} = \frac{4}{3},\quad \Rightarrow\quad \frac{AT}{AD} = \frac{3}{4},\quad \frac{AT}{TD} = \frac{3}{1},\quad\Rightarrow\quad \frac{DT}{TA} = \frac{1}{3}. \] From $BE : BT = 5 : 4$, \[ \frac{BE}{BT} = \frac{5}{4},\quad \Rightarrow\quad \frac{BT}{BE} = \frac{4}{5},\quad \frac{BT}{TE} = \frac{4}{1},\quad\Rightarrow\quad \frac{ET}{TB} = \frac{1}{4}. \]
Step 2: Apply Menelaus’ Theorem in $\triangle ADC$ with transversal $B\!-\!T\!-\!E$. Line $BTE$ intersects:
$AD$ at $T$, - $AC$ at $E$,
and the extension of $CD$ at $B$. Menelaus’ Theorem for $\triangle ADC$ with transversal $BTE$: \[ \frac{AE}{EC} \cdot \frac{CB}{BD} \cdot \frac{DT}{TA} = 1. \] Now, \[ \frac{CB}{BD} = \frac{CD + BD}{BD} = \frac{CD}{BD} + 1 = \frac{1}{x} + 1 = \frac{1 + x}{x}, \quad \frac{DT}{TA} = \frac{1}{3}. \] Thus, \[ \frac{AE}{EC} \cdot \frac{1 + x}{x} \cdot \frac{1}{3} = 1 \quad\Rightarrow\quad \frac{AE}{EC} = 3 \cdot \frac{x}{1 + x} = \frac{3x}{1 + x}. \] So \[ \frac{EC}{AE} = \frac{1 + x}{3x}. \]
Step 3: Apply Menelaus’ Theorem in $\triangle CBE$ with transversal $A\!-\!T\!-\!D$. Line $ATD$ intersects:
$CE$ (extended) at $A$,
$BE$ at $T$,
and $BC$ at $D$.
Menelaus’ Theorem for $\triangle CBE$ with transversal $ATD$: \[ \frac{CA}{AE} \cdot \frac{ET}{TB} \cdot \frac{BD}{DC} = 1. \] We have: \[ \frac{CA}{AE} = \frac{CE + AE}{AE} = \frac{CE}{AE} + 1 = \frac{1 + x}{3x} + 1 = \frac{1 + x + 3x}{3x} = \frac{4x + 1}{3x}, \] \[ \frac{ET}{TB} = \frac{1}{4},\qquad \frac{BD}{DC} = x. \] Substitute: \[ \left(\frac{4x + 1}{3x}\right) \cdot \frac{1}{4} \cdot x = 1. \]
Step 4: Solve for $x$. \[ \frac{x(4x + 1)}{12x} = 1 \quad\Rightarrow\quad \frac{4x + 1}{12} = 1 \quad\Rightarrow\quad 4x + 1 = 12 \quad\Rightarrow\quad 4x = 11 \quad\Rightarrow\quad x = \frac{11}{4}. \] Therefore, \[ \frac{BD}{CD} = \frac{11}{4} \quad\Rightarrow\quad BD : CD = 11 : 4. \]
In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is


In the adjoining figure, TS is a tangent to a circle with centre O. The value of $2x^\circ$ is
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: