Question:

Let $f(x) = \dfrac{x}{2x-1}$ and $g(x) = \dfrac{x}{x-1}$. Then, the domain of the function \[ h(x) = f(g(x)) + g(f(x)) \] is all real numbers except:

Show Hint

When dealing with compositions of rational functions, 1.~Exclude values that make any denominator zero, and 2.~Also exclude values that make the inner function produce an invalid input for the outer function. Always combine all such restrictions at the end.
Updated On: Dec 4, 2025
  • $\dfrac{1}{2},\, 1,\, \dfrac{3}{2}$
  • $\dfrac{1}{2},\, 1$
  • $-\dfrac{1}{2},\, \dfrac{1}{2},\, 1$
  • $-1,\, \dfrac{1}{2},\, 1$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To determine the domain of \[ h(x) = f(g(x)) + g(f(x)), \] both expressions \(f(g(x))\) and \(g(f(x))\) must be defined. 1. Domain of \(f(g(x))\) \underline{Inner function:} \[ g(x) = \frac{x}{x-1} \] is undefined when the denominator is zero: \[ x-1 \neq 0 \quad \Rightarrow \quad x \neq 1. \] \underline{Outer function:} \[ f(u) = \frac{u}{2u-1} \] is undefined when \[ 2u - 1 = 0 \quad \Rightarrow \quad u = \frac{1}{2}. \] Thus, we need \[ g(x) \neq \frac{1}{2}. \] Solve: \[ \frac{x}{x-1} \neq \frac12 \] Cross–multiply: \[ 2x \neq x - 1 \quad\Rightarrow\quad x \neq -1. \] Hence, for \(f(g(x))\), the restrictions are: \[ x \neq 1,\; -1. \] 2. Domain of \(g(f(x))\) \underline{Inner function:} \[ f(x) = \frac{x}{2x-1} \] is undefined when \[ 2x - 1 = 0 \quad \Rightarrow\quad x \neq \frac12. \] \underline{Outer function:} \[ g(v) = \frac{v}{v-1} \] is undefined when \(v = 1\). So we need: \[ f(x) \neq 1. \] Solve: \[ \frac{x}{2x-1} \neq 1. \] Set inequality: \[ x \neq 2x - 1 \quad\Rightarrow\quad -x \neq -1 \quad\Rightarrow\quad x \neq 1. \] Thus, for \(g(f(x))\): \[ x \neq \frac12,\; 1. \] 3. Combine all restrictions From \(f(g(x))\): \(x \neq 1,\; -1\). From \(g(f(x))\): \(x \neq \frac12,\; 1\). Therefore, the domain excludes: \[ \boxed{-1,\;\frac12,\;1}. \]
Was this answer helpful?
0
0

Questions Asked in CAT exam

View More Questions